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Abstract
Time series generation models are crucial for applications like data
augmentation and privacy preservation. Most existing time series
generation models are typically designed to generate data from
one specified domain. While leveraging data from other domain
for better generalization is proved to work in other application
areas, this approach remains challenging for time series modeling
due to the large divergence in patterns among different real world
time series categories. In this paper, we propose a multi-domain
time series diffusion model with domain prompts, named TimeDP.
In TimeDP, we utilize a time series semantic prototype module
which defines time series prototypes to represent time series ba-
sis, each prototype vector serving as “word” representing some
elementary time series feature. A prototype assignment module is
applied to extract the extract domain specific prototype weights,
for learning domain prompts as generation condition. During sam-
pling, we extract “domain prompt" with few-shot samples from
the target domain and use the domain prompts as condition to
generate time series samples. Experiments demonstrate that our
method outperforms baselines to provide the state-of-the-art in-
domain generation quality and strong unseen domain generation
capability.
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1 Introduction
In the landscape of large models and advanced machine learning
techniques, time series foundation models [3, 6] have garnered
increasing attention. These models, typically trained on extensive
datasets spanning various domains [23], have predominantly em-
phasized forecasting tasks rather than the generation of new data.
However, the accurate and meaningful generation of time series
is critical for applications such as medical record synthetic [17]
and financial scenario simulations [2, 9], as well as for augmenting
datasets where historical records are limited or incomplete [13].

Although some research has been conducted on time series gen-
eration, most efforts have been confined to the development of
generation model for single-domain data. In contrast, cross-domain
time series generation presents a significantly more complex chal-
lenge, as it requires the creation of new data across various domains
without relying on existing historical records. This stands out as a
gap, underscoring a substantial opportunity for further advance-
ments in multi-domain time series generation.

One straightforward approach to multi-domain time series gen-
eration involves the use of predefined domain labels during the
training process [16]. This method relies on the availability of do-
main labels to formulate the conditional generation process. How-
ever, this approach may struggle generalizing to large number of
domains or unseen domains. Moreover, the challenge intensifies
when domain labels are not explicitly available.

https://doi.org/XXXXXXX.XXXXXXX
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An alternative approach frames cross-domain time series genera-
tion as a conditional generation task by describing the domain using
natural language [11, 12]. However, the use of natural language
descriptions introduces significant challenges. Domain-specific nu-
ances are often difficult to articulate precisely, leading to noisy,
incomplete, or ambiguous prompts. Moreover, for entirely new or
evolving domains, crafting these domain descriptors can be imprac-
tical. This has underscored a critical need for a more systematic and
robust way to represent and utilize domain-specific information in
time series generation.

To address these challenges, we propose a label-free, text-free
method that learns time series prototypes as basic elements to con-
struct domain prompts for generating time series with a diffusion
model, named TimeDP. Through training, the prototypes learn
to represent time series basis, serving as “word" with time series
semantics. A prototype assignment module is applied for each train-
ing samples to construct the specific “prompt" for generating this
sample. During sampling, we extract “prompt" with few-shot sam-
ples from the target domain to construct the population of domain
prompts and use the domain prompts as condition to generate time
series samples.

To summarize, the main contributions of this paper are listed as
follows:

• We propose TimeDP, a multi-domain time series genera-
tion model by learning a set of time series prototypes and
prototype assignment module to construct domain prompts,
where the domain prompts serve as condition for a time
series diffusion model.

• We are the first to propose a multi-domain time series gen-
eration model using label-free, text-free conditioning mech-
anism.

• Experiments demonstrate that our method outperforms base-
lines with the state-of-the-art in-domain generation quality,
and strong unseen domain generation capability.

2 Related Work and Backgrounds
2.1 Time Series Generation
Existing time series generation models has based on various foun-
dational type of generative models. GAN-based methods has been
introduced to encourage the network to consider temporal dynamic
by jointly optimize both supervised and adversarial objectives for a
learned embedding space [25]. VAE-based methods have designed
specific decoder structure for temporal data considering trend and
seasonal decomposition [4], and first introduces vector quantiza-
tion technique together with bidirectional transformers to better
capture temporal consistency [16]. Another category is considered
as mixed-type methods, combining GANs, flows and ODEs [10].
Different from these methods, we utilize denoising diffusion proba-
bilistic models (DDPM) as our generation backbone.

Existing diffusion-based time series generation methods leverage
both unconditional and conditional diffusion models for generating
time series data with various denoising network backbones [14, 24].
Researchers have also considered combining diffusion models with
the constrained generation problem [1] and the extraction of time se-
ries intrinsic such as seasonal-trend decomposition techniques [26].
Compared with these single-domain methods, we first propose to

utilize label-free, text-free domain prompts as condition for gener-
ating time series.

2.2 Cross-Domain Time Series Model
There have been several recent work consider utilizing multiple-
domain time series data for training time series foundation models.
These works can be divided into two branches. The first branch
builds two-stage models. Kraus et al. [15] pretrains a representation
learning model on 75 datasets for the first stage and finetuning to
task specific models at the second stage. Gao et al. [6] conducts
masked reconstruction pretraining on 38 multi-domain datasets for
the first stage and a multi-task supervised learning for downstream
tasks. The second branch pretrains end-to-end transformer models
with patch tokenizers for time series forecasting. Woo et al. [23]
pretrains on a dataset with over 2B observations and Das et al. [3]
pretrains on a dataset with 100B time-points, both using patch-
ing and instance normalizing to unify across different data scale,
frequencies and lengths. These methods employ instance normaliza-
tion to generate forecasts based on historical data without explicitly
addressing domain differences. Compared with these approaches,
we propose to use time series prototypes, constructing domain
prompts to explicitly distinguish domains as well as bridge them.

2.3 Denoising Diffusion Probabilistic
Models (DDPMs)

A diffusion probabilistic model [22] learns to reverse the transitions
of a Markov chain which is known as the diffusion process that
gradually adds noise to data, ultimately destroying the signal.

Let x0 ∈ R𝑑 ∼ 𝑞(x0) be real data of dimension 𝑑 from space X.
The diffusion process generates x1, ..., x𝑁 from the same space with
the same shape as x0, using a Markov chain that adds Gaussian
noise over 𝑁 time steps: 𝑞(x1, ..., x𝑁 |x0) :=

∏𝑁
𝑛=1 𝑞(x𝑛 |x𝑛−1). The

transition kernel is commonly defined as:

𝑞(x𝑛 |x𝑛−1) := N(x𝑛 ;
√︁

1 − 𝛽𝑛x𝑛, 𝛽𝑛I), (1)

where {𝛽𝑛 ∈ (0, 1)}𝑛=1,...,𝑁 defines the variance schedule. Note
that x𝑛 at any arbitrary time step 𝑛 can be derived in a closed
form 𝑞(x𝑛 |x0) = N(x𝑛 ;

√
𝛼𝑛x0, (1 − 𝛼𝑛)I), where 𝛼𝑛 := 1 − 𝛽𝑛

and 𝛼𝑛 :=
∏𝑛
𝑠=1 𝛼𝑠 . For the reverse process, the diffusion model,

parameterized by 𝜃 , yields:

𝑝𝜃 (x0, x1, ..., x𝑁 ) := 𝑝 (x𝑁 )
𝑁∏
𝑛=1

𝑝𝜃 (xn−1 |xn), (2)

where 𝑝𝜃 (x𝑛−1 |x𝑛) := N(x𝑛−1; 𝝁𝜃 (x𝑛, 𝑛), 𝚺𝜃 (x𝑛, 𝑛)) and the tran-
sitions start at 𝑝 (x𝑁 ) = N(x𝑛 ; 0, I). The optimization objective is
derived into the maximizing of an approximation of the evidence
lower bound (ELBO) of the log-likelihood log𝑝𝜃 (x0). With a widely
adopted parameterization:

𝝁𝜃 (x𝑛, 𝑛) =
1

√
𝛼𝑛

(x𝑛 − 𝛽𝑛√
1 − 𝛼𝑛

𝝐𝜃 (x𝑛, 𝑛)), (3)

the training is performed to predict the noise term added in the
forward process which simplifies the objective to:

𝐿𝑠𝑖𝑚𝑝𝑙𝑒 := Ex0,𝝐,𝑛 [∥𝝐 − 𝝐𝜽 (
√
𝛼𝑛x0 +

√
1 − 𝛼𝑛𝝐, 𝑛)∥2] . (4)
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On sampling, x𝑛−1 = 1√
𝛼𝑛

(x𝑛 − 1−𝛼𝑛√
1−𝛼𝑛

𝝐𝜃 (x𝑛, 𝑛)) +𝜎𝑛z, where 𝜎𝑛 =√︁
𝛽𝑛 and z ∼ N(0, I) [7].
Typical time series diffusion models for forecasting task [5, 20,

21] encodes history context into 𝑐 as condition and make use of the
conditional form of DDPMs [8] for generating future time series:

𝑝𝜃 (x0, x1, ..., x𝑁 |𝑐) := 𝑝 (x𝑁 )
𝑁∏
𝑛=1

𝑝𝜃 (xn−1 |xn, 𝑐), (5)

In the problem setting of time series generation, the generation
process does not rely on time series history. We explore the use
of term 𝑐 to provide domain semantics for time series generation
model in this work.

2.4 Problem Formulation
Let 𝐷𝑇

𝑖
= {𝒙 ∈ R𝑇 }𝑁𝑖 , 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑇 ) denote a time series

dataset domain 𝑖 with 𝑁𝑖 time series samples, where each sample
contains𝑇 sequential values. A straightforward single-domain time
series generation model fits the joint distribution over time steps
𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑇 ) of each dataset with a separatemodel parameterized
by 𝜃𝑖 , namely 𝑝𝜃𝑖 (𝑥1, 𝑥2, ..., 𝑥𝑇 ) for all 𝒙 in 𝐷𝑇

𝑖
.

In this paper, we explore a domain-unified setting where the
mixture of𝑀 domain datasets with sequence length 𝑇 is denoted
by 𝐷𝑇 =

⋃𝑀
𝑖=1 𝐷𝑖 and we aim to build one model for the mixed

dataset parameterized by 𝜃 , namely 𝑝𝜃 (𝑥1, 𝑥2, ..., 𝑥𝑇 |𝑖) for all 𝒙 in
𝐷𝑇 .

Adhering to the channel-independent setting [19] that is widely
accepted by recent researches, we formulate the problem studied in
this paper in a uni-variate time series generation manner to handle
the heterogeneity of time series in terms of dimension [23].

3 Methodology
With sequences from all data domains mixed together during train-
ing, all time series features within latent representation are entan-
gled without a explicit way for distinguishing specific time series
data domain. Although utilizing domain labels as class labels for
training the time series generation model can provide instruction
for identifying specific domain, this approach implies an assump-
tion that all domains are independent from each other, neglecting
the different similarity levels among domain pairs. Therefore, it is
challenging to equip the model with the ability of generating time
series in selected domain while considering the inter-relationship
among domains. To overcome this challenge, the key is to build
a triggering mechanism for cross-domain time series model that
can control the model for generating time series data from specific
domain. Motivated by the recent advancements in controllable con-
tent generation with prompting technique, we propose to construct
domain prompts for controlling a cross-domain model.

In the rest of this section, we first describe the model architecture
design. Then, we describe the optimization objective and training
algorithm of the proposed model. Finally, we discuss the procedure
for in-domain sampling and unseen domain generation using the
proposed model.

3.1 Domain Prompts
Different from text and image modality where the generation target
can be expressed by natural language or categorized into discrete
classes, it is difficult to obtain explicit representation of time series
with words or class labels. Inspired by the widely adopted tech-
nique to extract “basis” which are the elementary features of time
series [18], these basis can be utilized as the shared "dictionary"
among different domains, each of which encodes different semantic
feature for time series.

3.1.1 Semantic Prototype Module. Each basis represents certain
elementary time series feature like trend and seasonality, that may
exist in time series data samples. Different individual time series
samples are assumed to share the same collection of basis but reflect
distinct subset of the collection. As a result, each time series gets
unique realization of these underlying features, similar to variable
weighted allocations to all the basis. Based on this assumption, a set
of latent arrays is introduced as time series prototypes 𝑃 ∈ R𝑁𝑝×𝑑

for representing cross-domain time series common knowledge,
where each prototype vector 𝑝 ∈ R1×𝑑 serves as the representa-
tion of a time series basis. In practice, the time series prototypes
𝑃 are initialized with random orthogonal vectors and are frozen
afterwards.

3.1.2 Prototype Assignment Module (PAM). Given the assumption
that each time series sample corresponds to a distinct allocation of
all the basis, the mapping from time series samples to the alloca-
tions needs to be established for explicitly identifying important
prototypes for each time series instance as well as distinguishing
among domains. We propose to extract a prototype assignment for
each time series instance as the importance weights of each time
series on each prototype, and the prototype assignments then serve
as conditions for the generation model.

Specifically, each input sequence 𝒙 is mapped into a weight vec-
tor whose dimension equals to the number of prototypes using
weight extractor 𝜙 , which is a neural network. The vector 𝜙 (𝒙)
represents the weight of each vector inside 𝑷 , and the weights are
utilized to modify the attention weight within the cross-attention
mechanism so that the predicted noises are only conditioned on
the assigned prototypes. Therefore, sequences from different do-
mains are represented by different 𝒎 weighted combinations of
the shared same set of time series prototypes. For ensuring spar-
sity on prototype assignments, all negative weights are discarded
when conducting prototype assignment. Formally, the prototype
assignments 𝒎 is extracted with the following formula:

𝒎 = 𝜙 (𝒙0) − I𝜙 (𝒙0 )<=0 · ∞, (6)

where I·<0 is the indicator function of negative elements.

3.2 Domain-Unified Training
Instead of training individual model for each specific dataset, we
train one model with data from multiple datasets at the same time
for generating different domain data. Here, we treat each dataset
as a separate domain. While data from each domain only represent
limited fraction of possible data distribution, leveraging data from
other domain can help model capture a more diverse time series
data distribution.
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Figure 1: Overview of TimeDP model.

Other than taking the unconditional denoising diffusion objec-
tive stated in eq. (4), we employ the conditional denoising objective
using 𝑐 from eq. (5) as condition to make use of the encoded se-
mantic context for denoising process, where the conditions are
incorporated into the intermediate layers of noise prediction net-
work by spatial attention.

𝑄 (𝑖 ) = 𝑧 (𝑖−1) ·𝑊 (𝑖 )
𝑄
, (7)

𝐾 (𝑖 ) = 𝑃 ·𝑊 (𝑖 )
𝐾
, 𝑉 (𝑖 ) = 𝑃 ·𝑊 (𝑖 )

𝑉
, (8)

𝑧 (𝑖 ) = FF(softmax(𝑄
(𝑖 )𝐾 (𝑖 )𝑇
√
𝑑

+𝒎) ·𝑉 (𝑖 ) ), (9)

where 𝒛 (𝑖 ) ∈ R𝑁×𝑑 denotes the output of the 𝑖th last U-Net
block.𝑊 (𝑖 )

𝑄
∈ R𝑑×𝑑 ,𝑊 (𝑖 )

𝐾
∈ R𝑑×𝑑 and𝑊 (𝑖 )

𝑉
∈ R𝑑×𝑑 are learnable

projection matrices applied on the sequence dimension. FF denotes
feed forward layer. The attention output 𝒛final is followed by another
feed forward network to produce final block output 𝜖 = FF(𝒛final).

With the conditional denoising mechanism described above, the
denoising objective using 𝜖-parameterization can be written and
simplified into:

𝐿cond =E[∥e − ê∥2]
=Ex0∈𝐷𝑇 ,e∼N(0,I),𝑛 [∥e − e𝜃,P (𝑥𝑛, 𝑛,m)∥2] . (10)

Due to the imbalance number of training samples across domain,
we adopt a re-weight sampling method for making the probability
equal for training on samples from each domain. Let 𝑁𝑖 denote
the number of sample sequences in dataset 𝑖 , we set the weight for
sampling each sample of this dataset as𝑤𝑖 = 1

𝑁𝑖∗|𝐷 | , such that the
probability for sampling sequence from each dataset is balanced.
The pseudo code for training algorithm is shown at Algorithm 1.

3.3 Generation with Domain Prompt
To generate time series samples of selected domain after the domain-
unified training onmultiple datasets, we first extract domain-specific

Algorithm 1 Training algorithm
Require: Sequence sample 𝒙
Ensure: Network parameters 𝜙 and 𝜃 , prototypes 𝑷
1: Initialize prototypes 𝑷
2: repeat
3: Sample 𝒙0 from 𝐷𝑇

4: Extract prototype assignments𝒎 according to eq. (6)
5: Randomly set 𝑷 as unconditional identifier 𝒑𝑢
6: Randomly sample time step 𝑛 ∼ U(1, 𝑁 )
7: Randomly sample noise 𝝐 ∼ N(0, 𝑰 )
8: Corrupt data 𝒙𝑛 =

√
𝛼𝑛𝒙0 +

√
1 − 𝛼𝑛𝝐

9: Predict step noise with 𝝐 = 𝝐𝜃,𝑃 (𝒙𝑛, 𝑛,𝑚)
10: Compute loss with Equation (10) and take gradient step.
11: until maximum training step

prototype assignments of a small random subset of training sam-
ples for the selected domain and group them into a distribution of
domain prompt representing the selected domain. Let𝐾 denotes the
number of selected samples from dataset 𝑖 , the domain prompt is
denoted by 𝒎𝐷𝑖 = {𝒎𝑖1, ...,𝒎

𝑖
𝐾
}. By constructing the conditioning

input, the model generates samples adhere to the selected domain
while is not constrained by the general temporal patterns exhibited
in the selected samples. When the number of expected generated
samples is larger than 𝐾 , we use a strategy of repeatedly generate
with each assignment in 𝐾 samples until the number of expected
samples is satisfied.

The sampling algorithm is described as Algorithm 2.

Algorithm 2 Sampling with domain prompts
Require: K time series prompts 𝒙 , prototypes 𝑷
Ensure: Generated time series samples 𝒙̂
1: Extract prototype prompts𝒎 with 𝒙 according to eq. (6)
2: Randomly sample noise 𝒙̂𝑁 ∼ N(0, 𝑰 )
3: for n from N to 1 do
4: Predict step noise with 𝜖𝑛 = 𝜖𝜃,𝑃 (𝑥𝑛, 𝑛,𝑚)
5: Denoise 𝒙̂𝑛−1 =

𝒙̂𝑛−
√

1−𝛼̄𝑛 𝝐̃𝑛√
𝛼̄𝑛

6: end for
7: 𝒙̂ = 𝒙̂0
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3.4 Unseen Domain Generation
Since the prototypes provide representations for time series basis,
their representation ability is not restricted to the domains in train-
ing sets. Therefore, they can be utilized to represent unseen domain
or datasets. For any unseen dataset or domain 𝐷 𝑗 with respect to
the training set, we can use extract “few-shot" samples 𝑥 𝑗1 , ..., 𝑥

𝑗

𝐾

from the dataset to construct domain prompt𝑚𝐷 𝑗 = {𝒎 𝑗

1, ...,𝒎
𝑗

𝐾
},

and then feed them into the model as condition to generate new
samples of the required dataset.

4 Experiments
In this section, we provide empirical experiment results for our
method using multiple real-world datasets. The experiment goal is
to investigate on the following research questions: (a) How good is
the quality of prompted generation on trained domain? (b) Can the
learned prototype help the model generalize to unseen domains?

4.1 Experiment Settings
Datasets. The experiments are conducted on 12 datasets across

four time series domains: Electricity, Solar and Wind from the
energy domain; Traffic, Taxi and Pedestrian from the transport
domain, Air Quality, Temperature and Rain from the nature do-
main; NN5, Fred-MD and Exchange from the economic domain.
All datasets are obtained by GluonTS package and Monash Time
Series Forecasting Repository. We pre-process all datasets into non-
overlapping uni-variate sequence sliceswith length in {24, 96, 168, 336}.
More details on datasets are described in the technical appendix.

Baselines. We compare our generation results with several repre-
sentative state-of-the-art time series generation methods, including
TimeGAN [25], GT-GAN [10], TimeVAE [4], and TimeVQVAE [16].
Note that in their original implementation, these methods are
trained with single dataset from a single domain for each time. To
align their implementations with our problem setting and method,
we train these models with the multi-domain dataset which mix all
of the twelve datasets together. Note that the TimeVQVAE baseline
has a class-conditioned variant, which we considered as a condi-
tional time series generation baseline that is able to sample by
domain label after being trained with the multi-domain dataset.

Implementation Details. We follow common practice of diffusion
models to utilize a U-Net architecture for our denoising model. The
architecture details are discussed in the technical appendix. The
number of prototypes are set to 16 for all the main evaluations.
Models for each sequence length are trained for 50, 000 steps using
a batch size of 128 and a learning rate of 1 × 10−4 with 1, 000
warm-up steps. For all baselines, we take the implementations and
recommended hyper-parameter settings from their public codes.

Evaluation Metrics. The major consideration for evaluating per-
formance of time series generation methods are two fold: (1) the
similarity between real and synthetic time series distributions; (2)
the internal temporal dependency within each instance. In light of
these two we apply the following three metrics for evaluating gen-
eration performance: (1) Maximum Mean Discrepancy (MMD)
which maps the data points into a high-dimensional feature space
with a kernel function and then compare the means of the two data

distribution; (2) Kullback-Leibler divergence (K-L) which is the
measure of how one probability distribution diverges from a sec-
ond, reference probability distribution, indicating the distribution
difference on variable level; (3) Marginal distribution differ-
ence (MDD) which calculates the empirical histogram for each
time step and calculate the average absolute difference of real and
synthetic data across bins.

4.2 Results
4.2.1 Evaluation of Generation Quality. In this experiment, we
evaluate the time series generation performance of our model on all
12 datasets across four domains, comparing with the baselines on
MMD, K-L and MDD. The proposed model and baseline models are
evaluated after trained with the multi-domain dataset. While the
baselines are not designed for learning time series from multiple
domains simultaneously, we modify them to align with our setting
that treating the multi-domain dataset as a whole. Additionally,
while TimeVQVAE can be trained in a class-conditional manner,
we also test on this variant, using the source of data domain as
class label to obtain a cross-domain version, as shown in column
“TimeVQVAE-C". Each run is repeated 5 timeswith different random
seeds. The average and the standard deviation of MMD and K-L
results for the sequence length of 168 are shown in Table 1. The
MDD results and other results for different sequence length settings
are reported in the appendix.

As shown in Table 1, our approach achieves the best results
on most of the twelve in-domain datasets, demonstrating supe-
rior performance on generating new time series samples that have
the closest distribution to real dataset samples, both jointly and
marginally. Most second best scores are obtained with the class-
conditional version of TimeVQVAE model. The results indicates
that, simply mixing datasets as the multi-domain training approach
generally fails to generate samples that are close to real data in
distribution, majorly due to the diverse intrinsic pattern among
different domains. Although using dataset labels helps greatly on
the training with mixed data as shown with TimeVQVAE-C, our
model outperforms it without being explicitly supervised with class
labels, indicating strong representation disentanglement capability.
The results for other sequence length settings are included in the
technical appendix. The results show that TimeDP consistently
demonstrate the best generation performance on both long and
short sequence length scenarios.

4.2.2 Evaluation of Unseen Domain Time Series Synthesis. In this
experiment, we evaluate the synthesis performance on unseen do-
main, where datasets that are not included in the training data. We
randomly select a few samples from the new datasets as demon-
strations for all models, and ensure a test set that does not overlap
with these samples. For TimeDP, these samples are used to extract
domain prompts. For baseline methods that are not designed to
generate following prompts or can not generate with unseen class
labels, we evaluate their unconditional generation outputs. The
results for these baseline models are labeled with “unconditional"
at the table. Additionally, we conduct a fine-tuning on all baseline
models to evaluate their few-shot learning setting. The fine-tuned
model are labeled with “Fine-tuned" at the table. We use 3, 10 and
100 samples as “prompt" and fine-tuning data in this experiment.
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Electricity 0.001±0.001 0.367±0.255 0.254±0.166 0.577±0.006 0.152±0.024 0.002±0.001
Solar 0.041±0.011 0.628±0.053 0.578±0.039 0.353±0.014 0.437±0.020 0.058±0.005
Wind 0.025±0.017 0.213±0.017 0.170±0.040 0.170±0.004 0.131±0.014 0.018±0.007
Traffic 0.083±0.034 0.567±0.057 0.538±0.078 0.218±0.007 0.213±0.016 0.089±0.001
Taxi 0.095±0.023 0.275±0.054 0.319±0.032 0.139±0.007 0.128±0.004 0.109±0.014

Pedestrian 0.044±0.020 0.090±0.030 0.112±0.019 0.065±0.002 0.067±0.007 0.058±0.002
Air 0.011±0.003 0.120±0.045 0.211±0.041 0.089±0.016 0.028±0.002 0.041±0.008

Temperature 0.219±0.022 0.926±0.042 0.809±0.081 1.002±0.014 0.323±0.008 0.259±0.043
Rain 0.057±0.039 0.329±0.285 0.111±0.109 0.292±0.019 0.074±0.007 0.080±0.004
NN5 0.164±0.010 0.874±0.088 0.632±0.074 0.821±0.061 0.327±0.012 0.243±0.041

Fred-MD 0.002±0.001 0.043±0.021 0.133±0.102 0.059±0.008 0.008±0.002 0.005±0.002
Exchange 0.151±0.024 0.530±0.154 0.475±0.116 0.543±0.149 0.342±0.050 0.233±0.107

K-
L

Electricity 0.012±0.016 0.488±0.175 0.407±0.079 0.734±0.023 0.280±0.051 0.027±0.015
Solar 0.016±0.005 0.612±0.447 0.120±0.041 0.260±0.016 0.865±0.108 0.234±0.062
Wind 0.152±0.034 1.924±1.233 0.107±0.016 0.484±0.015 0.483±0.066 0.183±0.047
Traffic 0.009±0.003 1.305±0.320 1.409±0.251 0.211±0.014 0.178±0.026 0.016±0.003
Taxi 0.011±0.004 0.650±0.180 0.950±0.197 0.110±0.020 0.110±0.026 0.038±0.010

Pedestrian 0.014±0.010 0.417±0.181 0.411±0.096 0.065±0.005 0.405±0.051 0.039±0.008
Air 0.027±0.016 0.348±0.093 0.578±0.049 0.164±0.012 0.054±0.012 0.093±0.025

Temperature 0.171±0.073 8.892±2.681 3.174±2.685 2.183±0.110 0.735±0.066 0.379±0.110
Rain 0.013±0.012 0.506±0.174 0.432±0.099 0.160±0.022 0.047±0.018 0.065±0.018
NN5 0.054±0.014 4.928±4.112 1.386±0.520 1.337±0.220 1.063±0.274 0.220±0.151

Fred-MD 0.203±0.035 0.512±0.290 0.380±0.070 0.346±0.041 0.831±0.077 1.118±0.276
Exchange 1.866±0.132 8.861±3.397 7.201±4.380 10.404±1.434 5.052±1.385 8.475±3.056

Table 1: Maximum mean discrepancy (MMD) and K-L divergence (K-L) of in-domain generation for sequence length 168. Best
results are highlighted in bold face and second best results are underlined.

The MMD and K-L results of our model and baselines for the gen-
eration sequence length 168 are shown in Table 2.

Table 2 shows that our model demonstrates robust zero-shot
time series synthesis capability, obtaining the best general MMD
and K-L scores compared to baselines. The fine-tuned models do
not show consistent performance improvement against the uncon-
ditional model, indicating that in the low data regime, fine-tuning
is not effective for fitting the data distribution. On the contrary, our
model is able to infer the unseen domain distribution using domain
prompts without additional tuning, and the performance improves
as the number of few-shot samples grows, showing strong unseen
domain generation capability.

4.2.3 Ablation Study. In this section, we evaluate the sensitivity of
PAM design by modifying the number of prototypes, and evaluate
its effectiveness by removing it and using 𝜙 (𝑥) as domain prompt
instead, which is shown with “-PAM”. We also test the uncondi-
tional version of model, labeled with “-Prompt”. Table 3 shows the
results on MMD and K-L scores, and MDD scores are shown in
the appendix. Our model’s performance remains consistent when
the number is large enough. Removing PAM and removing condi-
tioning mechanism both lead to great drop in MMD score while
maintaining stable K-L scores, indicating that diffusion model back-
bone is strong enough to capture marginal distribution while PAM
and domain prompts are essential in capturing sequence-wise time
series distribution.

5 Conclusion
In this paper, we propose amulti-domain time series diffusionmodel
with domain prompts, named TimeDP. TimeDP learns prototypes
to represent time series basis, serving as “word" with time series
semantics. A prototype assignment module is applied to extract the
domain specific prototype weights, for learning domain prompts
as generation condition. During sampling, we construct “domain
prompt" with few-shot samples from the target domain and use
the domain prompts as condition to generate time series samples.
Experiments demonstrate that our method outperforms baselines
to provide the state-of-the-art in-domain generation quality and
strong unseen domain generation capability.
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Solar 0.061±0.025 0.041±0.018 0.041±0.011 0.037±0.007 0.037±0.006 0.545±0.030 0.520±0.029
Wind 0.029±0.017 0.027±0.017 0.025±0.017 0.025±0.017 0.025±0.016 0.134±0.028 0.074±0.047
Traffic 0.101±0.025 0.077±0.018 0.083±0.034 0.081±0.023 0.067±0.005 0.270±0.015 0.288±0.020
Taxi 0.111±0.021 0.095±0.013 0.095±0.023 0.095±0.020 0.093±0.016 0.149±0.026 0.140±0.014

Pedestrian 0.049±0.021 0.040±0.010 0.044±0.020 0.044±0.016 0.041±0.016 0.052±0.009 0.057±0.007
Air 0.016±0.003 0.011±0.001 0.011±0.003 0.012±0.003 0.011±0.002 0.061±0.031 0.017±0.007

Temperature 0.221±0.034 0.209±0.014 0.219±0.022 0.221±0.023 0.224±0.027 0.354±0.011 0.179±0.043
Rain 0.056±0.020 0.047±0.020 0.057±0.039 0.051±0.030 0.057±0.057 0.056±0.046 0.043±0.018
NN5 0.198±0.059 0.157±0.003 0.164±0.010 0.155±0.008 0.158±0.005 0.348±0.021 0.257±0.021

Fred-MD 0.001±0.000 0.002±0.001 0.002±0.001 0.002±0.001 0.002±0.001 0.338±0.114 0.005±0.005
Exchange 0.146±0.031 0.146±0.022 0.151±0.024 0.150±0.024 0.152±0.023 1.059±0.008 0.117±0.028

Average 0.083 0.071 0.074 0.073 0.072 0.281 0.143

K-
L

Electricity 0.003±0.002 0.011±0.014 0.012±0.016 0.014±0.019 0.012±0.018 0.011±0.009 0.013±0.013
Solar 0.028±0.021 0.016±0.007 0.016±0.005 0.013±0.002 0.014±0.005 0.019±0.004 0.042±0.036
Wind 0.151±0.027 0.153±0.044 0.152±0.034 0.156±0.037 0.155±0.032 0.072±0.010 0.156±0.073
Traffic 0.024±0.030 0.007±0.003 0.009±0.003 0.012±0.009 0.011±0.004 0.014±0.013 0.047±0.027
Taxi 0.051±0.033 0.008±0.003 0.011±0.004 0.012±0.010 0.009±0.005 0.003±0.001 0.032±0.022

Pedestrian 0.031±0.028 0.010±0.008 0.014±0.010 0.014±0.009 0.012±0.008 0.021±0.010 0.041±0.047
Air 0.047±0.027 0.024±0.008 0.027±0.016 0.027±0.010 0.025±0.012 0.020±0.005 0.036±0.017

Temperature 0.304±0.079 0.176±0.061 0.171±0.073 0.179±0.087 0.166±0.074 0.132±0.009 0.168±0.096
Rain 0.033±0.009 0.008±0.004 0.013±0.012 0.008±0.005 0.013±0.008 0.009±0.008 0.009±0.004
NN5 0.217±0.223 0.050±0.021 0.054±0.014 0.045±0.007 0.046±0.006 0.049±0.016 0.073±0.031

Fred-MD 0.188±0.012 0.190±0.013 0.203±0.035 0.216±0.052 0.201±0.024 0.196±0.008 0.196±0.016
Exchange 1.863±0.223 1.828±0.131 1.866±0.132 2.313±1.007 1.875±0.235 1.623±0.146 1.506±0.086

Average 0.245 0.207 0.212 0.251 0.212 0.181 0.193

Table 3: Maximummean discrepancy (MMD) and K-L divergence (K-L) results for ablation study on generation sequence length
168. Best results are highlighted in bold face. Second best results are underlined.
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A Technical Appendix
A.1 Model Details
A.1.1 Architecture. The denoising network of the diffusion model
used in this paper is built with U-Net structure, with 4 up/down
sampling blocks. Each up/down sampling block consists of 2 resid-
ual blocks and 1 cross-attention block, where each residual block
contains two 1-D convolution layers and each cross-attention block
uses 1-D convolution as input/output projection layers and uses 8
attention heads. There is a middle block containing two residual
blocks and one attention blocks, placed after the down sampling
blocks and before the up sampling blocks. There are also additional
input and output blocks, each with one 1-D convolution layer. We
use SiLU as the non-linear activation function in this module.

For the prototype assignment module, we use two 1-D convo-
lution layers as feature extractor. Then there are another two 1-D
convolution layers with residual connection, followed by a linear
projection layer, as assignment generator producing final prototype
assignment. All non-linear activation functions in this module are
chosen to be ReLU.

A.1.2 Description on Datasets. In this section, we provide descrip-
tions into the datasets used in model training this paper:

• Electricity. This dataset represents the hourly electricity
consumption of 321 clients from 2012 to 2014 in kilowatt(kW).
It was originally extracted from UCI.

• Solar. This dataset contains 137 time series representing the
solar power production recorded every 1 hour in the state
of Alabama in 2006.

• Wind. This dataset contains a single very long daily time se-
ries representing thewind power production inMWrecorded
per every 4 seconds starting from 01/08/2019. It was down-
loaded from the Australian Energy Market Operator (AEMO)
online platform.

• Traffic. This dataset contains 15 months worth of daily data
(440 daily records) that describes the occupancy rate, be-
tween 0 and 1, of different car lanes of the San Francisco bay
area freeways across time.

• Taxi. This dataset contains spatio-temporal traffic time se-
ries of New York taxi rides taken at 1214 locations every 30
minutes in the months of January 2015 and January 2016.

• Pedestrian. This dataset contains hourly pedestrian counts
captured from 66 sensors in Melbourne city starting from
May 2009. The original dataset is regularly updated when
a new set of observations become available. The dataset
uploaded here contains pedestrian counts up to 2020-04-30.

• Air Quality. This dataset was used in the KDD Cup 2018
forecasting competition. It contains long hourly time se-
ries representing the air quality levels in 59 stations in 2
cities: Beijing (35 stations) and London (24 stations) from
01/01/2017 to 31/03/2018. The air quality level is represented
in multiple measurements such as PM2.5, PM10, NO2, CO,
O3 and SO2. The dataset uploaded here contains 270 hourly
time series which have been categorized using city, station
name and air quality measurement. The original dataset con-
tains missing values. The leading missing values of a given
series were replaced by zeros and the remaining missing

values were replaced by carrying forward the corresponding
last observations (LOCF method).

• Temperature. This dataset contains 32072 daily time series
showing the temperature observations and rain forecasts,
gathered by the Australian Bureau of Meteorology for 422
weather stations across Australia, between 02/05/2015 and
26/04/2017. The original dataset contains missing values and
they have been simply replaced by zeros. We extracted the
mean temperature column here.

• Rain. This data set comes from same source as Temperature
dataset, extracted the rain column.

• NN5. This dataset was used in the NN5 forecasting compe-
tition. It contains 111 time series from the banking domain.
The goal is predicting the daily cash withdrawals from ATMs
in UK. The original dataset contains missing values. A miss-
ing value on a particular day is replaced by the median across
all the same days of the week along the whole series.

• Fred-MD. This dataset contains 107 monthly time series
showing a set of macro-economic indicators from the Fed-
eral Reserve Bank. It was extracted from the FRED-MD data-
base. The series are differentiated and log-transformed as
suggested in the literature.

• Exchange. This dataset contains daily exchange rate be-
tween 8 currencies.

More over, we also describe the dataset used in unseen data
generation experiment:

• Stock. This dataset contains daily stock price of symbol
GOOG, listed in NASDAQ.

• Web. This dataset was used in the Kaggle Wikipedia Web
Traffic forecasting competition. It contains 145063 daily time
series representing the number of hits or web traffic for a
set of Wikipedia pages from 2015-07-01 to 2017-09-10. The
original dataset contains missing values. They have been
simply replaced by zeros.

A.2 Marginal Distribution Distance Score for
Generation Quality Experiment

The additional marginal distribution distance score results for the
generation quality experiment are shown in Table 4. Table 4 shows
that TimeDP gets overall best result on the MDD metrics.

A.3 Marginal Distribution Distance Score for
Ablation Study

The additional marginal distribution distance score results for the
ablation study experiment are shown in Table 8. From Table 8 we
can observe that the marginal distribution distance score perfor-
mance of TimeDP is generally stable.

A.4 Visualization Analysis on Domain Prompts
In this section, we analyze the correlation among domain prompts
through visualization.

Figure 2 provides a heatmap for domain prompts, each column
showing the weights for each prototype.
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M
ar
gi
na
lD

is
tr
ib
ut
io
n
D
is
ta
nc
e Electricity 0.005±0.002 0.075±0.035 0.047±0.008 0.098±0.003 0.067±0.004 0.005±0.001

Solar 56.414±21.890 70.334±11.928 83.855±3.100 16.721±0.041 57.401±0.041 59.043±0.440
Wind 0.084±0.009 0.226±0.061 0.138±0.015 0.201±0.004 0.159±0.011 0.085±0.008
Traffic 0.049±0.004 0.149±0.018 0.153±0.001 0.110±0.001 0.119±0.005 0.053±0.002
Taxi 0.081±0.008 0.104±0.010 0.109±0.004 0.094±0.001 0.096±0.004 0.084±0.004

Pedestrian 0.071±0.012 0.096±0.024 0.097±0.006 0.086±0.002 0.143±0.007 0.079±0.002
Air 0.042±0.002 0.139±0.025 0.171±0.011 0.085±0.001 0.092±0.008 0.058±0.006

Temperature 0.142±0.010 0.189±0.009 0.208±0.012 0.259±0.004 0.191±0.004 0.156±0.012
Rain 0.067±0.015 0.228±0.090 0.142±0.020 0.228±0.008 0.177±0.016 0.104±0.006
NN5 0.140±0.005 0.295±0.021 0.240±0.014 0.304±0.010 0.220±0.012 0.175±0.011

Fred-MD 0.021±0.002 0.079±0.016 0.098±0.024 0.104±0.009 0.126±0.009 0.076±0.025
Exchange 0.358±0.010 0.351±0.098 0.345±0.018 0.442±0.020 0.515±0.021 0.486±0.040

Table 4: Marginal Distribution Distance (MDD) results of in-domain generation for sequence length 168. Best results are
highlighted in bold face and second best results are underlined.
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Figure 2: Heatmap of Domain Prompts.
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Figure 3: T-SNE visualization of domain prompts. Domain
prompt generated for different dataset are marked with the
different color.

Figure 3 and Figure 4 provide t-SNE analysis on the similarity of
prompts among domain. We can observe that the model has learned
to differentiate among domain with domain prompts.
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Figure 4: T-SNE visualization of domain prompts. Datasets
in the same domain are marked with the same color.
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TimeDP TimeGAN GT-GAN TimeVAE TimeVQVAE TimeVQVAE-C

M
ax
im

um
M
ea
n
D
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Electricity 0.001±0.001 0.270±0.095 0.189±0.085 0.980±0.016 0.142±0.017 0.002±0.001
Solar 0.023±0.016 0.513±0.031 0.517±0.027 0.321±0.005 0.411±0.004 0.036±0.011
Wind 0.042±0.019 0.348±0.019 0.308±0.015 0.419±0.006 0.129±0.008 0.034±0.011
Traffic 0.009±0.005 0.466±0.071 0.522±0.072 0.146±0.005 0.189±0.009 0.014±0.004
Taxi 0.032±0.005 0.156±0.046 0.243±0.030 0.049±0.004 0.036±0.003 0.036±0.004

Pedestrian 0.056±0.011 0.085±0.022 0.121±0.011 0.111±0.003 0.087±0.005 0.063±0.004
Air 0.008±0.004 0.146±0.022 0.206±0.007 0.192±0.010 0.010±0.002 0.017±0.005

Temperature 0.086±0.015 0.801±0.048 0.801±0.015 1.003±0.012 0.215±0.018 0.111±0.019
Rain 0.014±0.010 0.182±0.096 0.085±0.052 0.737±0.048 0.036±0.006 0.037±0.004
NN5 0.072±0.015 0.704±0.028 0.507±0.078 0.708±0.037 0.162±0.011 0.086±0.004

Fred-MD 0.002±0.001 1.113±0.048 0.822±0.139 0.187±0.014 0.003±0.001 0.003±0.000
Exchange 0.127±0.066 0.504±0.024 0.484±0.074 0.662±0.018 0.276±0.026 0.155±0.039

K-
L

Electricity 0.016±0.015 0.333±0.134 0.423±0.178 1.245±0.018 0.302±0.022 0.023±0.007
Solar 0.017±0.009 0.410±0.042 0.102±0.039 0.458±0.016 0.878±0.031 0.120±0.036
Wind 0.316±0.057 2.378±0.989 0.317±0.175 1.105±0.019 0.566±0.030 0.374±0.053
Traffic 0.014±0.005 1.061±0.177 1.211±0.286 0.446±0.116 0.219±0.016 0.013±0.005
Taxi 0.006±0.002 0.547±0.150 0.872±0.148 0.263±0.022 0.121±0.015 0.015±0.007

Pedestrian 0.016±0.010 0.369±0.092 0.408±0.105 0.211±0.015 0.431±0.017 0.023±0.008
Air 0.029±0.007 0.477±0.154 0.923±0.119 0.683±0.067 0.108±0.015 0.057±0.006

Temperature 0.240±0.029 7.672±2.287 1.419±0.461 1.288±0.145 0.764±0.076 0.357±0.055
Rain 0.037±0.019 0.356±0.089 0.468±0.158 0.987±0.073 0.077±0.020 0.089±0.037
NN5 0.074±0.028 2.273±0.231 1.154±0.288 1.434±0.117 0.904±0.175 0.063±0.010

Fred-MD 0.515±0.174 3.356±0.639 2.161±0.483 0.701±0.091 0.533±0.067 0.574±0.168
Exchange 7.270±2.080 5.482±2.108 3.897±2.172 8.682±1.334 4.201±0.945 4.561±0.212
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e Electricity 0.004±0.002 0.059±0.011 0.052±0.014 0.114±0.001 0.063±0.002 0.004±0.001

Solar 70.117±16.651 64.855±3.985 76.076±4.681 46.304±0.010 50.554±0.146 53.143±0.574
Wind 0.115±0.017 0.195±0.016 0.138±0.013 0.291±0.003 0.188±0.007 0.133±0.010
Traffic 0.017±0.005 0.112±0.008 0.124±0.003 0.079±0.002 0.080±0.002 0.016±0.002
Taxi 0.016±0.002 0.036±0.005 0.049±0.002 0.028±0.001 0.029±0.002 0.014±0.001

Pedestrian 0.049±0.006 0.060±0.004 0.075±0.002 0.069±0.002 0.092±0.002 0.046±0.001
Air 0.028±0.005 0.076±0.016 0.112±0.003 0.100±0.003 0.053±0.003 0.035±0.003

Temperature 0.102±0.007 0.145±0.004 0.175±0.009 0.180±0.002 0.157±0.006 0.109±0.007
Rain 0.007±0.001 0.063±0.017 0.046±0.011 0.122±0.002 0.052±0.001 0.012±0.003
NN5 0.073±0.005 0.248±0.005 0.185±0.019 0.243±0.008 0.111±0.004 0.068±0.003

Fred-MD 0.010±0.002 0.107±0.002 0.098±0.004 0.053±0.007 0.038±0.003 0.011±0.001
Exchange 0.348±0.011 0.321±0.040 0.313±0.017 0.417±0.009 0.466±0.009 0.441±0.021

Table 5: Maximummean discrepancy (MMD) and K-L divergence (K-L) and Marginal Distribution Distance (MDD) results of
in-domain generation for sequence length 24. Best results are highlighted in bold face and second best results are underlined.

A.5 Visualization on Unseen Domain Generated
Time Series

Figure 6 and Figure 5 show the few-shot prompting results.
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TimeDP TimeGAN GT-GAN TimeVAE TimeVQVAE TimeVQVAE-C

M
ax
im

um
M
ea
n
D
is
cr
ep
an
cy

Electricity 0.002±0.001 0.401±0.219 0.317±0.311 0.648±0.012 0.153±0.023 0.002±0.000
Solar 0.019±0.004 0.584±0.056 0.634±0.119 0.369±0.012 0.439±0.021 0.035±0.008
Wind 0.029±0.015 0.195±0.030 0.217±0.134 0.179±0.002 0.129±0.016 0.013±0.007
Traffic 0.018±0.005 0.456±0.100 0.513±0.073 0.162±0.005 0.189±0.014 0.027±0.002
Taxi 0.055±0.007 0.197±0.057 0.328±0.071 0.060±0.002 0.089±0.005 0.061±0.002

Pedestrian 0.040±0.010 0.068±0.025 0.159±0.149 0.064±0.001 0.066±0.011 0.049±0.005
Air 0.010±0.006 0.103±0.046 0.244±0.160 0.085±0.011 0.022±0.003 0.036±0.007

Temperature 0.178±0.047 0.827±0.092 0.859±0.109 0.958±0.012 0.413±0.034 0.205±0.033
Rain 0.044±0.027 0.285±0.199 0.166±0.203 0.327±0.020 0.068±0.008 0.072±0.001
NN5 0.234±0.047 0.888±0.091 0.706±0.116 0.875±0.053 0.321±0.008 0.241±0.011

Fred-MD 0.005±0.002 0.055±0.022 0.150±0.184 0.046±0.013 0.004±0.001 0.006±0.001
Exchange 0.343±0.210 0.449±0.018 0.567±0.141 0.592±0.124 0.337±0.056 0.224±0.028

K-
L

Electricity 0.015±0.017 0.552±0.241 0.447±0.147 0.790±0.018 0.245±0.039 0.031±0.005
Solar 0.010±0.002 0.922±0.953 0.117±0.047 0.288±0.015 0.812±0.077 0.151±0.114
Wind 0.182±0.029 2.288±1.135 0.164±0.071 0.527±0.009 0.510±0.112 0.284±0.115
Traffic 0.010±0.006 1.241±0.757 1.198±0.340 0.205±0.008 0.192±0.016 0.014±0.004
Taxi 0.010±0.007 0.550±0.333 0.801±0.270 0.121±0.003 0.102±0.017 0.027±0.007

Pedestrian 0.012±0.005 0.458±0.368 0.327±0.148 0.074±0.004 0.373±0.027 0.034±0.006
Air 0.025±0.011 0.317±0.102 0.510±0.147 0.168±0.012 0.061±0.012 0.096±0.019

Temperature 0.392±0.097 11.298±1.212 5.830±4.888 1.737±0.068 1.135±0.110 0.567±0.050
Rain 0.022±0.009 0.549±0.257 0.481±0.146 0.237±0.025 0.055±0.021 0.091±0.010
NN5 0.069±0.033 5.829±6.120 2.709±2.080 1.537±0.224 1.038±0.168 0.103±0.072

Fred-MD 1.183±0.280 0.628±0.335 0.486±0.108 0.441±0.063 0.813±0.093 1.240±0.232
Exchange 14.336±2.652 6.445±2.210 10.170±6.381 9.937±4.322 3.740±1.261 4.408±0.700
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e Electricity 0.005±0.002 0.070±0.020 0.046±0.011 0.082±0.002 0.058±0.002 0.005±0.001

Solar 77.545±18.384 60.819±9.001 77.198±5.522 47.123±0.114 50.619±0.099 53.220±0.832
Wind 0.089±0.012 0.207±0.054 0.135±0.035 0.208±0.002 0.159±0.009 0.069±0.014
Traffic 0.024±0.003 0.109±0.018 0.122±0.009 0.083±0.001 0.089±0.002 0.028±0.002
Taxi 0.043±0.004 0.072±0.008 0.092±0.010 0.064±0.001 0.070±0.003 0.040±0.002

Pedestrian 0.058±0.007 0.074±0.018 0.088±0.025 0.073±0.001 0.116±0.003 0.058±0.003
Air 0.031±0.007 0.091±0.021 0.145±0.022 0.070±0.002 0.066±0.004 0.056±0.007

Temperature 0.135±0.016 0.154±0.004 0.185±0.007 0.196±0.001 0.198±0.006 0.143±0.010
Rain 0.039±0.006 0.192±0.059 0.113±0.011 0.196±0.003 0.134±0.009 0.047±0.012
NN5 0.175±0.016 0.270±0.014 0.225±0.017 0.268±0.006 0.196±0.007 0.158±0.004

Fred-MD 0.023±0.005 0.063±0.009 0.076±0.023 0.055±0.012 0.083±0.004 0.045±0.017
Exchange 0.402±0.083 0.342±0.044 0.334±0.024 0.425±0.027 0.503±0.016 0.426±0.033

Table 6: Maximummean discrepancy (MMD) and K-L divergence (K-L) and Marginal Distribution Distance (MDD) results of
in-domain generation for sequence length 96. Best results are highlighted in bold face and second best results are underlined.
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TimeDP TimeGAN GT-GAN TimeVAE TimeVQVAE TimeVQVAE-C

M
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um
M
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n
D
is
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Electricity 0.001±0.002 0.320±0.197 0.347±0.524 0.504±0.012 0.135±0.018 0.003±0.000
Solar 0.074±0.012 0.646±0.032 0.735±0.045 0.400±0.015 0.493±0.024 0.081±0.006
Wind 0.024±0.003 0.208±0.095 0.221±0.010 0.145±0.005 0.139±0.015 0.014±0.007
Traffic 0.077±0.009 0.518±0.028 0.704±0.101 0.235±0.011 0.233±0.017 0.091±0.005
Taxi 0.189±0.034 0.329±0.011 0.390±0.078 0.166±0.002 0.202±0.004 0.189±0.007

Pedestrian 0.035±0.008 0.140±0.067 0.158±0.019 0.061±0.003 0.074±0.007 0.067±0.008
Air 0.018±0.005 0.213±0.037 0.261±0.062 0.075±0.005 0.038±0.003 0.053±0.007

Temperature 0.185±0.021 0.914±0.031 0.934±0.051 0.976±0.022 0.318±0.008 0.197±0.014
Rain 0.096±0.086 0.151±0.108 0.198±0.295 0.135±0.018 0.066±0.002 0.081±0.005
NN5 0.191±0.016 0.663±0.027 0.951±0.069 0.806±0.086 0.333±0.009 0.260±0.049

Fred-MD 0.006±0.004 0.156±0.097 0.063±0.006 0.052±0.020 0.010±0.006 0.007±0.001
Exchange 0.683±0.217 0.724±0.130 0.553±0.238 0.598±0.166 0.318±0.077 0.275±0.198

K-
L

Electricity 0.016±0.016 0.396±0.108 1.169±2.029 0.719±0.020 0.257±0.023 0.042±0.033
Solar 0.017±0.006 0.179±0.062 2.150±2.179 0.249±0.012 0.870±0.110 0.201±0.017
Wind 0.158±0.032 0.169±0.064 4.264±2.790 0.373±0.019 0.495±0.043 0.121±0.037
Traffic 0.008±0.004 1.443±0.354 2.992±0.592 0.241±0.012 0.210±0.034 0.023±0.006
Taxi 0.076±0.034 0.937±0.151 1.461±0.367 0.160±0.015 0.230±0.026 0.094±0.007

Pedestrian 0.009±0.003 0.452±0.131 1.544±0.908 0.044±0.007 0.407±0.069 0.053±0.017
Air 0.017±0.010 1.031±0.145 1.481±0.553 0.180±0.015 0.121±0.028 0.079±0.016

Temperature 0.037±0.016 2.479±1.867 9.139±2.247 1.726±0.122 1.119±0.179 0.224±0.123
Rain 0.011±0.002 0.388±0.112 0.271±0.046 0.028±0.005 0.025±0.013 0.028±0.005
NN5 0.075±0.034 1.418±0.122 8.449±5.473 1.233±0.256 0.836±0.250 0.180±0.181

Fred-MD 0.815±0.630 0.309±0.145 0.568±0.321 0.212±0.047 0.586±0.161 1.099±0.020
Exchange 18.426±4.493 14.116±3.798 13.875±2.965 10.670±5.335 7.755±2.566 7.651±3.841
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e Electricity 0.006±0.004 0.048±0.009 0.061±0.058 0.099±0.002 0.069±0.003 0.008±0.003

Solar 49.170±21.121 82.860±4.163 74.403±18.119 13.755±0.077 54.065±0.183 55.878±0.249
Wind 0.091±0.007 0.146±0.028 0.251±0.060 0.172±0.004 0.168±0.009 0.070±0.009
Traffic 0.066±0.002 0.191±0.005 0.206±0.031 0.134±0.001 0.158±0.005 0.072±0.005
Taxi 0.680±0.021 1.073±0.162 0.986±0.126 0.764±0.003 0.750±0.003 0.707±0.001

Pedestrian 0.074±0.006 0.121±0.027 0.153±0.070 0.086±0.002 0.161±0.007 0.098±0.006
Air 0.049±0.004 0.157±0.002 0.166±0.039 0.078±0.002 0.099±0.005 0.056±0.005

Temperature 0.153±0.010 0.230±0.007 0.218±0.013 0.341±0.005 0.204±0.009 0.155±0.006
Rain 0.100±0.007 0.144±0.011 0.238±0.184 0.210±0.014 0.222±0.009 0.138±0.014
NN5 1.079±0.016 1.128±0.017 1.199±0.024 1.209±0.021 1.109±0.006 1.074±0.012

Fred-MD 0.031±0.007 0.106±0.038 0.085±0.006 0.093±0.035 0.128±0.016 0.060±0.025
Exchange 0.510±0.131 0.337±0.023 0.383±0.091 0.443±0.027 0.537±0.036 0.452±0.048

Table 7: Maximummean discrepancy (MMD) and K-L divergence (K-L) and Marginal Distribution Distance (MDD) results of
in-domain generation for sequence length 336. Best results are highlighted in bold face and second best results are underlined.
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TimeDP - PAM - Prompt
# Prototypes 4 8 16 32 64

M
ar
gi
na
lD

is
tr
ib
ut
io
n
D
is
ta
nc
e

Electricity 0.006±0.001 0.005±0.001 0.005±0.002 0.005±0.002 0.005±0.002 0.008±0.004 0.014±0.008
Solar 46.294±19.573 45.134±21.804 56.414±21.890 38.374±22.157 64.258±29.679 47.291±16.147 32.032±6.336
Wind 0.089±0.014 0.084±0.011 0.084±0.009 0.084±0.012 0.084±0.009 0.087±0.006 0.090±0.023
Traffic 0.072±0.021 0.051±0.003 0.049±0.004 0.050±0.002 0.050±0.001 0.131±0.001 0.133±0.004
Taxi 0.087±0.004 0.082±0.005 0.081±0.008 0.082±0.008 0.081±0.007 0.089±0.002 0.089±0.004

Pedestrian 0.080±0.010 0.072±0.006 0.071±0.012 0.073±0.009 0.072±0.010 0.076±0.003 0.076±0.011
Air 0.050±0.005 0.043±0.003 0.042±0.002 0.042±0.003 0.042±0.003 0.046±0.002 0.048±0.007

Temperature 0.153±0.013 0.138±0.007 0.142±0.010 0.143±0.011 0.144±0.011 0.163±0.002 0.128±0.021
Fred-MD 0.024±0.004 0.020±0.003 0.021±0.002 0.020±0.002 0.020±0.001 0.070±0.002 0.029±0.010
Exchange 0.358±0.032 0.358±0.008 0.358±0.010 0.357±0.006 0.360±0.008 0.493±0.003 0.327±0.006

Average 3.955 3.849 4.790 3.286 5.443 4.060 2.769

Table 8: Marginal Distribution Distance (MDD) results for ablation study on generation sequence length 168. Best results are
highlighted in bold face. Second best results are underlined.
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Figure 5: 10-shot generation results of Web dataset, compared with real Web dataset samples.
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Figure 6: 10-shot generation results of Stock dataset, compared with real Stock dataset samples.
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