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Abstract
Multivariate Time Series Generation (MTSG) plays a crucial role in
time series analysis, supporting tasks such as data augmentation
and anomaly detection. While several methods exist for MTSG, rec-
ommending the most suitable method for new scenarios remains a
significant challenge. Although prior work by [2] provides guidance
for selecting MTSG methods, it lacks coverage of recent diffusion-
based methods and has limited exploration of channel-independent
frameworks. We address these gaps by improving the recommenda-
tion guide, highlighting the effectiveness of a central discriminator
within the channel-independent framework. Our revised guide
makes three key recommendations: 1) VAE-based methods excel
on small-scale datasets; 2) a channel-independent framework with
the newly designed central discriminator is optimal in most cases;
and 3) a diffusion-based method is preferable when ample data and
computational resources are available.

CCS Concepts
• Computing methodologies→ Neural networks.
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1 Introduction
Time series generation (TSG) involves producing synthetic se-
quences of temporally ordered data that mimic the statistical prop-
erties of real-world time series. Multivariate time series generation
(MTSG) has gained prominence due to its applications in tasks like
data augmentation [40], time series prediction [9, 50], and anomaly
detection [3, 5].

Numerous methods have been developed for MTSG [2], typi-
cally falling into two categories: 1) channel-mixing frameworks,
which merge time series features using models like generative ad-
versarial networks (GANs) [12, 53, 45, 32, 31], variable autoencoders
(VAEs) [11, 29, 30, 34], flow-based methods [7, 25, 42, 23, 56], and
diffusion-basedmethods [27, 18, 10, 54]; and 2) channel-independent
frameworks with a central discriminator [43], which independently
capture single-channel information while the discriminator handles
inter-channel correlations.

Choosing an appropriate TSGmethod depends on specific factors
such as data volume, periodicity, and trends. For instance, Fourier
flow [1] is well-suited for tasks involving autocorrelation, while
TimeVAE [11] performs better on smaller datasets. Therefore, a
robust recommendation guide is essential for users. However, exist-
ing analyses, like [2], may be incomplete—favoring channel-mixing
frameworks, particularly VAE-based methods, while neglecting ad-
vanced diffusionmodels and offering limited exploration of channel-
independent frameworks. For example, the periodicity of the mul-
tivariate time series and the correlation between the channels are
important features. However, the central discriminator designed in
[43] does not adequately address this problem. In addition, [2] has
not tested the newly proposed diffusion model-based methods and
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needs to be upgraded to form a reliable recommendation guide for
time series generation [27, 18, 10, 54].

In light of the insufficient comparison with advanced diffusion-
based generative frameworks and limited exploration of channel-
independent frameworks, we have updated the recommendation
guidelines from [2] to better aid users in selecting TSG frameworks.
Specifically, we advocate for an increased priority recommenda-
tion for both channel-independent and diffusion-based generative
frameworks, forming an enhanced TSGGuide.

The key contributions of this work are summarized as follows:

• We updated the recommended guidelines for time series gen-
erationmethods, increased the priority of channel-independece-
basedMTSG, and added results and recommended guidelines
for time series generation methods based on diffusion mod-
els.

• In the channel-independence-based strategy, we designed
the Central Convolution Discriminator (CCD), which signif-
icantly improved the performance of MTSG based on the
channel-independence-based strategy by better capturing
the features within and between channels.

2 Evaluation of current methods and TSGGuide
2.1 Channel Mixing-based MTSG
There is a predominant focus on channel-mixing time series gen-
eration framework. Some methods [33, 14, 48, 52, 21, 22] employ
GAN-based [15] architecture combined with neural networks like
LSTM [17], GRU [8], and Transformer [46], which excel at capturing
sequential data. Certain methods leverage VAEs [26] to effectively
capture temporal features through variational inference, resulting
in efficient models with potential interpretability. Recent advance-
ments have explored hybrid methods, combining flow-basedmodels
with techniques such as ODE [7], or integrating them with GANs
or VAEs. Moreover, several diffusion-based methods [54, 27, 10, 18]
have been designed to handle MTSG. Due to their stable training
and high-quality generation, diffusion models exhibit promising
performance on numerous datasets. Employing channel-mixing
framework intuitively allows for improved consideration of corre-
lations between channels in multivariate time series data, thereby
enhancing model performance.

2.2 Channel Independence-based MTSG
COSCIGAN [43] employs channel GANs and a central discrimina-
tor to generate multivariate time series, but it fails to effectively
capture key characteristics like periodicity and inter-channel cor-
relations, limiting the performance of the central discriminator.
Compared to the MLP-based discriminator in COSCIGAN, more
advanced architectures such as attention mechanisms, TimesNet
[49], and ModernTCN [13] offer better potential for performance
improvement. Our findings suggest that the central discriminator
operates primarily as a time series classifier in small-sample con-
texts. However, MLP-based methods, as well as attention-based
approaches like TimesNet, exhibit limited effectiveness in handling
such scenarios.

3 Problem Definition
Dataset Setup. Suppose that an MTS has length 𝐿 with 𝑁 chan-
nels. The general length of these time series is often long, making
it difficult to input the entire time series data at once and extract its
features. To generate time series within a short period and extract
features from the time series data, we need to choose an appropriate
subsequence length, denoted as 𝑙 , and use a step size of 1 when per-
forming the partition. Then we transform MTS into 𝑇 ∈ R𝐾×𝑙×𝑁 ,
where 𝐾 = 𝐿 − 𝑙 + 1. Additionally, we normalize the dataset to the
range of [0, 1] to enhance efficiency and numerical stability.

Time Series Generation.We define 𝑝 (𝑇 ) as the true distribu-
tion of the time series. Our goal is to create a synthetic time series
𝑇 ∈ R𝐾×𝑙×𝑁 in which its distribution 𝑞(𝑇 ) is similar to 𝑝 (𝑇 ).

4 Background
4.1 Channel Mixing-based MTSG
Channel-mixing frameworks in time series generation models aim
to learn the joint distribution of all channels in a multivariate time
series, regardless of the number of channels. The goal of these
frameworks can be defined as follows: min

𝑞
𝐷 (𝑝 (𝑇 )∥𝑞(𝑇 )), where

𝐷 is any suitable measure of the distance between two distribu-
tions. Irrespective of the utilization of GANs, VAEs, or flow-based
methods, most of them employing a channel-mixing framework
strive to learn an improved 𝑞(𝑇 ).

4.2 Channel Independence-based MTSG
Figure 1 illustrates the structure of the channel-independent frame-
work with a central discriminator, comprising two main compo-
nents: 1) Channel-independent TSGs; 2) Central discriminator.

4.2.1 Channel-independent TSGs. Here, each single-channel TSG
module synthesizes one single-channel time series. The input 𝑇
is divided into 𝑁 single-variable sequences 𝑡𝑖 ∈ R𝐾×𝑙×1, where
𝑖 ∈ [1, 𝑁 ]. Subsequently, following the channel-independent setup,
the 𝑖-th channel’s time series 𝑡𝑖 is input into the 𝑖-th single-channel
TSG module, yielding the generated single-channel time series data
𝑡𝑖 = 𝐺𝑖,𝜃𝑖 (𝑧), where 𝐺 is a TSG module and 𝜃𝑖 is the parameters
of the 𝑖th module. This framework allows flexibility in selecting
channel-independent generators, such as GANs and VAEs.

In the channel objective, we aim to find a distribution 𝑞(𝑡𝑖 ) that
closely approximates the true channel distribution 𝑝 (𝑡𝑖 ) of the
dataset. Subsequently, by concatenating 𝑁 instances of 𝑡𝑖 , where
𝑖 = 1, · · · , 𝑁 , along the second dimension, the generated time series
𝑇 is obtained. For each channel 𝑡𝑖 , we optimize min

𝑞
𝐷 (𝑝 (𝑡𝑖 )∥𝑞(𝑡𝑖 )).

When channel-independent generators are trained, incorporating
central discriminator loss suffices.

4.2.2 Central Discriminator. In the center objective, we consider
the overall characteristics of multivariate time series, which in-
volves integrating the time series signals from all channels. This part
designs powerful binary classifiers to distinguish between 𝑇 and 𝑇 .
Certainly, the more difficult it is to distinguish between𝑇 and𝑇 un-
der this classifier, the better.We should optimizemin

𝑞
𝐷 (𝑝 (𝑇 )∥𝑞(𝑇 )).
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Figure 1: Structure of channel independece-based MTSG.

Figure 2: The structure of CCD.

5 Central Convolution Discriminator
CCD uses Fast Fourier Transform (FFT) or Wavelet Transform (WT)
to perform periodic segmentation of the samples, reducing the
classification difficulty while revealing inter-period relationships
within the samples to enhance key features that are beneficial for
classification. It then uses 2D convolution to capture both intra-
channel and inter-channel relationships. The details of CCD are
shown in Appendix A. The designed CCD is shown in Figure 2.

5.1 Period Block
For a multivariate time series 𝑇 , we utilize Frequency to obtain its
periodicity in the frequency domain.

𝐴 = 𝐴𝑣𝑔 (𝐴𝑚𝑝 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑇 ))) (1)

where 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (·). represents the solution to obtain the frequency.
Here, we use FFT or WT. 𝐴 represents the calculated amplitude of
each frequency, which is averaged from the dimensions 𝑁 using
𝐴𝑣𝑔(·).

The true periodicity of𝑇 is computed using 𝑙𝑝 = ⌈ 𝑙
𝑓
⌉. Depending

on the selected frequency and the corresponding period length, we
can transform the dimension of the multivariate time series 𝑇 and
𝑇 into (𝐾, 𝑙𝑝 , 𝑁 × 𝑓 ).

𝑇𝑝 ∈ R𝐾×𝑙𝑝×𝑓 ,𝑇𝑝 ∈ R𝐾×𝑙𝑝×𝑓 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝑇,𝑇 ) (2)

5.2 Conv2d Block
After passing through the Periodmodule, we utilize multiple conv2d
blocks to capture the three types of local information mentioned
earlier, distinguishing between real and synthesized multivariate
time series. The formulation is as follows:

𝑡𝑐 , 𝑡𝑐 = 𝐶𝑜𝑛𝑣2𝑑 𝐵𝑙𝑜𝑐𝑘 (𝑇𝑝 ,𝑇𝑝 ) (3)

where we transform 2D representations 𝑇𝑝 ,𝑇𝑝 ∈ R𝐾×𝑙𝑝×𝑓 into
1D space 𝑡𝑐 , 𝑡𝑐 ∈ R𝐾×𝑑 . Considering both performance and effi-
ciency, we opt for experiments using the nn.conv2d() block based
on PyTorch for our main experiments.

Finally, the features extracted through the Conv2d blocks are
further processed by the feed forward module, which consists of a
linear layer followed by a sigmoid activation function, yielding the
ultimate classification results.

6 Evaluation of CCD
6.1 Validation of TSGGuide
This section explores the performance of current typical time se-
ries generation models on different domain data and forms a user-
oriented guide for recommending time series generation models.

6.1.1 Baselines. We present a detailed analysis of five representa-
tive time series generation (TSG) methods that are based on three
foundational generative models. To ensure experimental fairness,
all experiments are conducted on a machine with Intel® Core® i9
12900K CPU @ 5.20 GHz, 64 GB memory, and NVIDIA GeForce
RTX 3090.

Pure GAN-based Methods. Early studies [33, 14] incorporated
vanilla GAN architectures originally designed for image generation
and combined them with neural networks such as RNN and LSTM,
specifically tailored for sequential data. Subsequent research has
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Figure 3: Results of six methods on real datasets.

been dedicated to pioneering techniques that adapt to time series
data and enhance performance.

• RTSGAN [39]. RTSGAN integrates an autoencoder into GANs
and focuses on generating time series with variable lengths
while effectively handling missing data.

• COSCI-GAN [43]. COSCI-GAN is specifically designed to
explicitly capture the complex dynamical patterns within each
series, with a focus on preserving the relationships among
channels or features.

Pure VAE-based Methods. VAE-based methods commonly lever-
age variational inference to effectively capture temporal features.
These methods are known for their efficiency and potential inter-
pretability.

• TimeVAE [11]. TimeVAE extends the application of Varia-
tional Autoencoders (VAEs) to general-purpose time series
generation. It incorporates convolutional operations and en-
hances interpretability through time series decomposition
techniques.

• TimeVQVAE [29]. TimeVQVAE incorporates the short time
Fourier Transform (STFT) to decompose input time series into
low-frequency and high-frequency components. It further
enhances the modeling of these components by integrating
Vector Quantization with VAEs [29], ensuring the preserva-
tion of both the general shape and specific details of the time
series.

Mixed-Type Methods. Recent advancements in time series gen-
eration (TSG) have explored mixed-type methods, which involve
combining flow-based models with techniques such as Discrete
Fourier Transform (DFT) or Ordinary Differential Equations (ODEs).
Additionally, these methods have been integrated with Generative
Adversarial Networks (GANs) or Variational Autoencoders (VAEs)
to further enhance their capabilities.

• LS4 [56]. LS4 is derived from deep state-space models and
integrates stochastic latent variables to augment the model’s
capacity while leveraging the training objectives of Varia-
tional Autoencoders (VAEs).

6.1.2 Parameters. For RTSGAN, we adhere to its complete time
series generation [39] and set 𝛽1 = 0.9 and 𝛽2 = 0.999. For COSCI-
GAN, we set 𝛾 = 5, employ MLP-based networks for the central
discriminator, and follow other hyper-parameters from [43]. For
TimeVAE, we set the latent dimension to 8 and the hidden layer sizes
to 50, 100, and 200. For TimeVQVAE, we adopt the settings from
[29], with 𝑛_𝑓 𝑓 𝑡 = 8 and varying𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 ∈ {2000, 10000} for
two training stages. For LS4, we set the latent space dimension to 5
and configured the batch size to 1024.

6.1.3 Datasets. Dataset Selection. To ensure reproducibility and
mitigate biases or oversimplification in our evaluations, we exclu-
sively employ publicly available, real-world datasets. It is crucial
to emphasize that our objective is not to accumulate an exhaustive
collection of datasets, but rather to curate a diverse set encom-
passing multiple domains, showcasing varied data statistics and
distributions. Table 1 summarizes their statistics. Below, we provide
a brief description of each dataset.

• Stock [53]. It comprises daily historical Google stock data
from 2004 to 2019, including volume and high, low, opening,
closing, and adjusted closing prices.

• Stock Long [53]. It is identical to the Stock dataset but with
a sequence length of 125.

• Energy [6]. It includes information on appliance’s energy
use in a low-energy building.

• Energy Long [6]. It is identical to the Energy dataset but
with a sequence length of 125.

• EEG [41]. It is with the measurements derived from Elec-
troEncephaloGraphy (EEG) data captured by Emotiv EEG
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Neuroheadset. It helps to understand brainwave patterns, es-
pecially those under specific cognitive conditions or stimuli.

• Dodgers Loop Game (DLG) [19]. It consists of loop sensor
data from the Glendale on-ramp for the 101 North freeway
in Los Angeles.

• D9: Air [55]. It has air quality, meteorological, and weather
forecast data from 4 major Chinese cities: Beijing, Tianjin,
Guangzhou, and Shenzhen from 2014/05/01 to 2015/04/30.

This study selected five datasets from different real-world do-
mains: the Stock dataset from the financial domain, the Energy
dataset from the energy sector, the EEG dataset from biological
signals, the DLG dataset from traffic, and the Air dataset. To better
investigate the impact of subsequence length on the model, we set
different values of l for the Stock and Energy datasets. Therefore,
our method is applicable to real cases or practical applications.

Table 1: The statistics of seven datasets.

Datasets 𝑅 𝑙 𝑁 Domain

Stock [53] 3,294 24 6 Financial
Stock Long [53] 3,204 125 6 Financial
Energy [6] 17,739 24 28 Appliances
Energy Long [6] 17,649 125 28 Appliances
EEG [41] 13,366 128 14 Medical
DLG [19] 246 14 20 Traffic
Air [55] 7731 168 6 Sensor

Figure 4: The critical difference diagram illustrates the per-
formance ranking of six algorithms across five datasets em-
ploying Wilcoxon-Holm analysis [20] at a significance level
of 𝑝 = 0.05. Algorithm positions are indicative of their mean
ranks across multiple datasets, with higher ranks signify-
ing a method consistently outperforming competitors. Thick
horizontal lines denote scenarios where there is no statisti-
cally significant difference in algorithm performance.

6.1.4 Evaluation Metrics. We adopt the rigorous evaluation frame-
work of TSGBench [2], utilizing a comprehensive set of metrics to
assess both global and local properties of the generated time series
(See Appendix D for details): 1) Global Similarity Metrics: MDD
(Mean Distribution Distance), ACD (Auto-Correlation Distance),
SD (Spectral Distance), and KD (Kernel Distance). 2) Local Simi-
larity Metrics: ED (Euclidean Distance) and DTW (Dynamic Time
Warping). Smaller values of these metrics are preferred.

6.2 Results
The results shown in Figures 3 and 4 provide evidence for the effec-
tiveness of CCDGAN in synthesizing MTS data. We also conducted

experiments based on DLG and Air, which are from the traffic flow
dataset and air dataset respectively. For more dataset details, see
Appendix C. The experimental results are shown in Tables 2 and
3. The performance of CCDGAN surpasses that of COSCI-GAN,
validating the effectiveness of the proposed CCDmodule. As shown
in Table 12, we choose the LSTM, which exhibits moderate gener-
ation performance, as the channel-independent generator. How-
ever, its performance exceeds that of the current state-of-the-art
channel-mixing methods, TimeVQVAE and TimeVAE. Particularly
on datasets with a higher number of channels such as Energy and
Energy Long, the superiority of CCDGAN is more pronounced. Rel-
ative to COSCI-GAN, the proposed framework does not consume
additional time. Furthermore, in comparison to channel-mixing
methods, the runtime of the channel-independent approach is com-
petitive.

6.3 CCDGAN v.s. Diffusion-based Methods
In recent years, diffusion models have been increasingly applied
to MTSG, achieving notable results. From the above experimental
results, CCDGAN performs better when the amount of data is
sufficient. We replicate the experimental setup from [53], detailed
in Appendix Section H.

Baselines. To facilitate a fair comparison among different ap-
proaches and provide updated recommendations for MTSG meth-
ods, we compare CCDGAN with three diffusion-based TSG meth-
ods: Diffwave [27], DiffTime [10], and Diffusion-TS [54]. These
methods, including Diffusion-TS, DiffWave, and DiffTime, are all
based on DDPM, with modifications tailored to the characteristics
of time series data.

Parameters. For Diffusion-TS, DiffWave and DiffTime, to ensure
the fairness of the experiments, we strived to maintain consistency
in parameter settings. We chose 4 attention heads, each with a
dimension of 16, and selected 2 encoder and decoder layers.

Datasets. For dataset selection, we chose the previously men-
tioned Stock and Energy datasets. For the Sine dataset, we opted
for the sine wave dataset provided in [53], which is channel inde-
pendent and exhibits more diverse variations.

The results, presented in Table 4, indicate that diffusion-based
methods generally exhibit superior performance. However, they
also require significant time and computational resources. For those
prioritizing stable training and high-quality results, diffusion-based
methods are recommended. Nonetheless, CCDGAN outperforms
certain diffusion-based methods in terms of performance while
demanding less time and computational resources, highlighting its
competitive advantage in both effectiveness and efficiency.

6.4 TSGGuide: Recommendation Guidelines
Finally, combining the guidelines from the study by TSGBench [2],
we offer guidance to assist users in effectively selecting suitable
TSG methods. In contrast to TSGBench, the updated sections are
shown in Appendix Section J.

(1) In Figure 3, VAE-based methods demonstrate faster train-
ing times and rank above average on several metrics. This
makes VAE-based methods suitable for initial attempts due
to their lower time requirements. As a foundational step, we
recommend that users start with the VAE-based method. Its
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Table 2: Results on DLG dataset.

Method CCDGAN TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
MDD↓ 0.284 0.293 0.301 0.241 0.227 0.238
ACD↓ 0.121 0.162 0.164 0.137 0.117 0.178
SD↓ 0.214 0.235 0.209 0.257 0.216 0.227
KD↓ 12.341 12.25 12.175 12.275 12.377 12.375

ED↓ 1.12 1.363 1.315 1.641 1.363 1.177
DTW↓ 2.346 2.367 2.476 2.316 2.375 2.438

PS↓ 0.415 0.488 0.446 0.461 0.425 0.427
DS↓ 0.245 0.221 0.237 0.257 0.227 0.288

Table 3: Results on Air dataset.

Method CCDGAN TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
MDD↓ 0.139 0.127 0.121 0.142 0.148 0.117
ACD↓ 0.109 0.117 0.109 0.117 0.115 0.126
SD↓ 0.356 0.328 0.387 0.382 0.361 0.371
KD↓ 8.147 8.278 8.178 8.187 8.169 8.171

ED↓ 0.816 0.828 0.827 0.826 0.829 0.877
DTW↓ 2.044 2.28 2.091 2.081 2.062 2.027

PS↓ 0.404 0.483 0.426 0.433 0.429 0.416
DS↓ 0.107 0.186 0.131 0.124 0.139 0.121

Table 4: Results betweenCCDGANandDiffusion-basedmeth-
ods. Bold indicates best performance.

Metric Methods Sines Stocks Energy

Context-FID↓

CCDGAN 0.008±.001 0.158±.022 0.134±.019
Diffusion-TS 0.006±.000 0.147±.025 0.089±.024
Diffwave 0.014±.002 0.232±.032 1.031±.131
DiffTime 0.006±.001 0.236±.074 0.279±.045

Correlational
Score↓

CCDGAN 0.016±.000 0.023±.012 0.823±.108
Diffusion-TS 0.015±.004 0.004±.001 0.856±.147
Diffwave 0.022±.005 0.030±.020 5.001±.154
DiffTime 0.017±.004 0.006±.002 1.158±.095

Discriminative
Score↓

CCDGAN 0.009±.000 0.138±.042 0.131±.000
Diffusion-TS 0.006±.007 0.067±.015 0.122±.003
Diffwave 0.017±.008 0.232±.061 0.493±.004
DiffTime 0.013±.006 0.097±.016 0.445±.004

Predictive
Score↓

CCDGAN 0.093±.000 0.041±.000 0.250±.000
Diffusion-TS 0.093±.000 0.036±.000 0.250±.000
Diffwave 0.093±.000 0.047±.000 0.251±.000
DiffTime 0.093±.000 0.038±.001 0.252±.000

Training
Time(min)↓

CCDGAN 11 10 37
Diffusion-TS 17 15 60
Diffwave 19 16 68
DiffTime 19 16 69

2000 Data
Sampling
Time(s)↓

CCDGAN 5 7 13
Diffusion-TS 23 26 65
Diffwave 24 30 70
DiffTime 24 29 69

consistently excellent computational efficiency makes it the
preferred choice for initial exploration and handling of small
data sets.

(2) If we emphasize autocorrelation or forecasting, such as pre-
dictive maintenance or stock market analysis, the ACD mea-
sure becomes crucial. CCDGAN is highly suitable for these
scenarios.

(3) In Figure 3, CCD shows a leading performance on the ma-
jority of datasets, proving that CCDGAN performs well on
real-world datasets, even though they come from different
domains. When the dataset originates from a novel domain
or exhibits complex multivariate relationships, CCDGAN
is a recommended choice. It shows excellent performance
across data sets from various domains and outperforms other
methods, particularly on datasets with a large number of
variables.

(4) In Table 4, diffusion model-based methods achieve certain
advantages in metrics. However, these methods require sig-
nificant training and sampling time, leading to higher compu-
tational costs. Therefore, if ample computational resources
are available, diffusion model-based approaches should be
considered. When computational resources and dataset are
abundant and optimal results are desired, it is recommended
to utilize Diffusion-TS. These methods typically exhibit sta-
ble training and yield superior performance.

(5) Users can further adjust method selection based on specific
application requirements, including identifying the appro-
priate channel-independent TSG module (see Section I).
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Table 5: The results of Transformer, Timesnet, COSCIGAN, and CCD on the Stock dataset and the 10% Stock dataset. Due to
poor downstream task performance with 10% of the Stock data, comparative results are omitted. Bold numbers in the table
indicate the best performance.

100% Stock 10% Stock

Methods CCD Transformer Timesnet COSCIGAN CCD Transformer Timesnet COSCIGAN

MDD↓ 0.315 0.341 0.38 0.334 0.511 0.692 1.036 0.606
ACD↓ 0.015 0.027 0.029 0.037 0.049 0.132 0.135 0.083
SD↓ 0.127 0.149 0.133 0.217 0.200 0.431 0.344 0.581
KD↓ 0.446 0.449 0.485 1.647 0.861 1.392 1.492 1.422

ED↓ 1.068 1.094 1.100 1.101 2.239 2.58 2.98 1.935
DTW↓ 2.772 2.805 2.959 3.014 5.717 5.93 6.64 4.913

PS↓ 0.073 0.097 0.091 0.086 - - - -
DS↓ 0.327 0.339 0.341 0.396 - - - -

6.5 Validation of CCD
6.5.1 Ablation Study of CCD. This section examines the effect of
the central discriminator within the channel-independent genera-
tion framework.

Firstly, We compared COSCI-GAN using common attention
mechanisms and TimesNet, a state-of-the-art time series classifica-
tion framework, as baselines. Experiments were conducted on both
the full Stock dataset and a reduced version with 10% of the data,
maintaining the same number of channels in COSCI-GAN. The cen-
tral discriminator in COSCI-GAN was replaced by the Transformer
Encoder, TimesNet, and CCD for evaluation. The Transformer En-
coder structure followed [46] with 𝑁 = 6. Detailed information on
parameter metrics and datasets is provided in Appendix Section C
and D.

As shown in Table 5, these methods struggled with small sample
scenarios, exhibiting a notable performance drop with 10% of the
Stock data. The heavy parameterization of attention mechanisms
likely made them less effective for limited data. TimesNet, designed
for single-channel time series, failed to capture inter-channel depen-
dencies, a critical aspect for multi-channel time series generation.
In contrast, CCD demonstrated superior performance, particularly
with the 10% Stock data, where its advantage was most pronounced.

Moreover, we validated the effectiveness of the Period and the
Conv2D modules on the Stock[53] and Energy[6] datasets. No
Period indicates the removal of the Period module from CCD,
avoiding manipulation of real and fake time series dimensions. No
Conv2D denotes the replacement of the Conv2D block with three
linear layers.

The results in Table 6 show that removing either the Period
or Conv2D block decreases performance. This underscores the
importance of both components in CCD, highlighting their role in
enhancing and capturing various types of local information across
different datasets.

6.5.2 Exploration of Period Blocks in CCD. We investigated the
impact of using FFT versus Wavelet Transform in the Period Block.
While FFT focuses solely on the frequency domain, the Wavelet
Transform offers both frequency and time localization. Experiments

on the Stock dataset, with consistent parameters except for fre-
quency extraction, revealed minimal performance differences be-
tween FFT and Wavelet Transform, as shown in Table 19.

6.5.3 Analysis of Kernel Size. We investigated the selection of
Conv2D kernel sizes, testing two strategies: fixed kernel sizes (1, 3,
and 5) and varied kernel sizes defined by 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 = 2 × 𝑖 + 1 for
𝑖 = 0, 1, · · · , 𝑘 with 𝑘 = 3 as the number of Conv2D blocks. Results
on the Stock and Energy datasets, shown in Table 7, demonstrate
that the varied kernel size strategy outperforms the fixed kernel
size approach. Stacking Conv2D modules with increasing kernel
sizes allows the model to capture more diverse and richer feature
representations.

The benefits of adopting such a strategy are as follows: 1) Com-
pared to a fixed convolutional kernel, by stacking conv2d modules
with increasing kernel sizes, the model can extract more diverse and
richer feature representations. Different kernel sizes can capture
different types of features. 2) By using smaller kernel sizes in the
initial convolutions, the model can simultaneously focus on finer
local features. As the conv2d blocks are stacked, the model needs
to acquire broader global features.

6.5.4 Effect of no. of Channels on CCD. We explored the impact of
the number of channels 𝑁 , using the Energy dataset as an example.
We randomly selected channel data with numbers 4, 8, and 12 in
the Energy dataset. The results, as shown in Table 8, indicate that
the number of channels has almost no impact on CCDGAN.

We investigated the impact of subsequence length 𝑙 . The Stock
dataset was divided into Stock (𝑙 = 24) and Stock Long (𝑙 = 125)
lengths, and the Energy dataset was divided into Energy (𝑙 = 24)
and Energy Long (𝑙 = 125). Experimental results are shown in
Tables 9-12. As the subsequence length 𝑙 increases, the performance
metrics of CCDGAN degrade but still outperform other methods.

6.5.5 Effect of No. of convolution layers on CCD. For the number
of convolution layers, we experimented with 2, 3, and 4 layers on
the Stock dataset, while keeping other experimental settings and
parameters constant. The results are shown in Table 9. The results
indicate that setting the convolution layers to 3 yields relatively
good experimental results on the Stock dataset. Therefore, this
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Table 6: Ablation study of Period and Conv2D modules on the Stock and Energy datasets.

Dataset Stock Energy

Metrics No Period No Conv2d CCD No Period No Conv2d CCD

MDD↓ 0.433 0.431 0.305 0.226 0.395 0.219
ACD↓ 0.022 0.039 0.015 0.037 0.044 0.023
SD↓ 0.149 0.142 0.127 0.29 0.285 0.272
KD↓ 0.829 0.848 0.556 0.781 0.801 0.748

ED↓ 1.103 1.097 1.068 0.994 0.979 0.966
DTW↓ 4.442 4.39 4.252 7.131 7.195 7.045

PS↓ 0.09 0.127 0.073 0.305 0.28 0.247
DS↓ 0.408 0.483 0.327 0.424 0.433 0.419

Table 7: Analysis of Kernel size on Energy and Stock dataset.

Dataset Stock Energy

Kernel Size 1 3 5 varied 1 3 5 varied

MDD↓ 0.485 0.433 0.572 0.305 0.306 0.289 0.251 0.219
ACD↓ 0.171 0.211 0.193 0.015 0.049 0.051 0.052 0.023
SD↓ 0.174 0.16 0.152 0.127 0.296 0.267 0.284 0.272
KD↓ 0.807 0.719 0.692 0.556 0.912 0.959 0.761 0.700

ED↓ 1.102 1.079 1.092 1.068 0.992 0.979 0.971 0.966
DTW↓ 5.104 4.829 4.701 4.252 7.281 7.163 7.082 7.045

PS↓ 0.166 0.092 0.096 0.073 0.466 0.301 0.288 0.247
DS↓ 0.468 0.391 0.383 0.327 0.484 0.466 0.451 0.419

Table 8: Analysis of number of channels on Energy dataset.

No. of channels 4 8 12

MDD↓ 0.314 0.315 0.315
ACD↓ 0.017 0.015 0.013
SD↓ 0.128 0.127 0.127
KD↓ 0.442 0.446 0.445

ED↓ 1.068 1.068 1.07
DTW↓ 2.773 2.772 2.773

PS↓ 0.071 0.073 0.081
DS↓ 0.32 0.327 0.331

Table 9: Analysis of number of layers on Stock dataset.

No. of layers 2 3 4

MDD↓ 0.307 0.315 0.318
ACD↓ 0.017 0.015 0.014
SD↓ 0.133 0.127 0.127
KD↓ 0.442 0.446 0.445

ED↓ 1.066 1.068 1.067
DTW↓ 2.775 2.772 2.78

PS↓ 0.08 0.073 0.079
DS↓ 0.331 0.327 0.325

setting can be initially applied to other datasets, with adjustments
made based on the actual situation.

7 Conclusion
In this work, we tackled the limitations in existing multivariate
time series generation frameworks by proposing an updated rec-
ommendation guide, TSGGuide, aimed at improving the selection
of generation methods. Our comprehensive analysis revealed gaps
in prior work, particularly in the limited exploration of channel-
independent frameworks and the absence of evaluations for diffusi
on-based models. We have demonstrated that by enhancing the cen-
tral discriminator within the channel-independent framework—inte
grating methods like TimesNet and attention mechanisms—and ul-
timately introducing CCD, significant performance improvements
can be achieved, particularly in small sample scenarios.

Our contributions offer a more balanced assessment of both
channel-independent and diffusion-based methods, underscoring
their value in time series generation tasks. This work provides a
more nuanced framework for selecting TSG methods, addressing
both the data-specific needs of users and the current state of the
field. Future research should continue to investigate the evolving
landscape of MTSG, with an emphasis on addressing periodicity
and inter-channel correlation challenges. With the conditional time
series generation problem posed, it makes sense to explore the
advantages and disadvantages of these schemes.
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A CCDGAN
Since time series generation tasks are motivated by small sample
sizes, the central discriminator in the channel independent genera-
tion framework is essentially a small sample time series classifier.
The main challenges in small-sample time series classification arise
from the difficulty of adequately training neural networks with lim-
ited data, which reduces their classification performance. Possible
solutions include: 1) performing data augmentation to increase the
data size; 2) decomposing the problem to reduce the classification
difficulty; 3) enhancing the information to capture key features that
aid classification; and 4) using a small-parameter, high-performance
mapping framework. The designed CCD is shown in Figure 2.

A.0.1 Period Block. In multivariate time series, changes in one
channel often have short-term effects on other channels. COSCI-
GAN [43] may tend to overlook the crucial mechanism of sharing
information between adjacent time steps. Additionally, considering
the periodic nature of time series, models should be able to cap-
ture time patterns across different cycles. Each time point involves
two types of temporal changes: intra-cycle changes and inter-
cycle changes, which correspond to adjacent regions and different
phases of the same cycle.

For a multivariate time series 𝑇 , we utilize Frequency to obtain
its periodicity in the frequency domain.

𝛼 = 𝐴𝑣𝑔 (𝐴𝑚𝑝 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑇 ))) (4)

where 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (·). represents the solution to obtain the frequency.
Here, we use FFT or WT. 𝛼 represents the calculated amplitude of
each frequency, which is averaged from the dimensions 𝑁 using
𝐴𝑣𝑔(·).

In consideration of the sparsity in the frequency domain and to
avoid noise caused by irrelevant high frequencies, we conducted
testing and found that selecting only the first amplitude value is
sufficient. We denote the non-normalized amplitude as 𝛼 and obtain
the most significant frequency 𝑓 from it. The true periodicity of𝑇 is
computed using 𝑙𝑝 = ⌈ 𝑙

𝑓
⌉. Depending on the selected frequency and

the corresponding period length, we can transform the dimension
of the multivariate time series 𝑇 and 𝑇 into (𝐾, 𝑙𝑝 , 𝑁 × 𝑓 ).

𝑇𝑝 ∈ R𝐾×𝑙𝑝×𝑓 ,𝑇𝑝 ∈ R𝐾×𝑙𝑝×𝑓 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝑇,𝑇 ) (5)

It is worth noting that this transformation enhances three types of
local information to the transformed 3D tensor: 1) local information
between adjacent time points in the same channel (within one cycle),
2) local information between adjacent periods in the same channel
(across cycles), and 3) local information of adjacent time steps in
different channels. Therefore, through the receptive field of the
convolution structure, CCD can better preserve the correlations
between channels.

A.0.2 Conv2d Block. After passing through the Period module, we
utilize multiple conv2d blocks to capture the three types of local
information mentioned earlier, distinguishing between real and
synthesized multivariate time series. The formulation is as follows:

𝑡𝑐 , 𝑡𝑐 = 𝐶𝑜𝑛𝑣2𝑑 𝐵𝑙𝑜𝑐𝑘 (𝑇𝑝 ,𝑇𝑝 ) (6)

where we transform 2D representations 𝑇𝑝 ,𝑇𝑝 ∈ R𝐾×𝑙𝑝×𝑓 into 1D
space 𝑡𝑐 , 𝑡𝑐 ∈ R𝐾×𝑑 .

After conducting tests, we recommend adopting a progressive
kernel size expansion strategy for convolution operations. The
specific sizes for the kernel are 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 = 2 × 𝑖 + 1, where
𝑖 = 1, 2, · · · , 𝑘 and 𝑘 is the number of Conv2d blocks. In addition to
the aforementioned approach, we can choose various convolution
modules from computer vision, such as widely used models like
ResNet [16] and ResNeXt [51], for feature extraction within the
Conv2d Block. Generally, stronger 2D backbones for representation
learning lead to better performance. Considering both performance
and efficiency, we opt for experiments using the nn.conv2d() block
based on PyTorch for our main experiments. Later we will talk
about the influence on kernel size.

Finally, the features extracted through the Conv2d blocks are
further processed by the feedforward module, which consists of a
linear layer followed by a sigmoid activation function, yielding the
ultimate classification results.

A.0.3 Loss Function. In designing the loss function, our approach
propagates the CD loss to each single-channel time series genera-
tion module. By incorporating CD loss terms, we aim to enhance
the modules’ focus on inter-channel correlations.

If we select pure GAN-based methods to be the single-channel
time series generation module, the objectives function can be sum-
marized as follows:

min
𝜃𝑖

max
𝜙𝑖

max
𝛼

L = E𝑡𝑖∼𝑃data [log(𝐷𝑖,𝜙𝑖 (𝑡𝑖 ))

+ 𝛾 · log(𝐶𝐶𝐷𝛼 (𝑡𝑖 ))]
+ E𝑧∼𝑃𝑧 [log(1 − 𝐷𝑖,𝜙𝑖 (𝐺𝑖,𝜃𝑖 (𝑧)))
+ 𝛾 · log(1 −𝐶𝐶𝐷𝛼 (𝐺𝑖,𝜃𝑖 (𝑧),𝐺 𝑗≠𝑖 ))] .

(7)

where 𝐺𝑖,𝜃𝑖 represents the generator of the 𝑖-th channel inde-
pendent GAN with parameters 𝜃𝑖 , and 𝐷𝑖,𝜙𝑖 represents the discrim-
inator of the 𝑖-th channel independent generator with parameters
𝜙𝑖 . 𝐶𝐶𝐷𝛼 represents the central discriminator with parameter 𝛼 .
𝑃data represents the distribution of real time series. 𝐺 𝑗≠𝑖 repre-
sents all other generators with fixed parameters, except 𝐺𝑖,𝜃𝑖 , in
the optimization steps. 𝛾 is a hyper-parameter that controls the
balance between three types of locality among channels and gener-
ates higher-quality signals within each channel. 𝑧 is a shared noise
vector sampled from the distribution 𝑃𝑧 .

A.0.4 Model Training. Our training approach using the channel-
independent framework is similar to that of COSCIGANs. In each
training iteration, 𝑁 channel-independent generators are trained.
These modules generate single-channel time series 𝑡𝑖 for their re-
spective channels, which are then concatenated to form 𝑇 . This
concatenated time series𝑇 , along with the real MTS𝑇 , is then used
to train the CCD and channel-independent generators.

B Additional Information for Simulated
Datasets

B.0.1 Simulated Datasets. To effectively assess the performance
and significance of CCD, we require a customizable time series
dataset. Therefore, we utilized three synthetic datasets with dual
channels as proposed by [43].
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Simple sine The formula for a basic sine function is given as:
𝑥 = 𝐴 sin(2𝜋 𝑓 𝑡) +𝜖 , where𝐴, 𝑓 , and 𝜖 are hyperparameters. Across
all time series data, channel 1 maintains a frequency 𝑓 of 0.01, while
channel 2’s frequency is set to 0.005. For the first data type, the
amplitude 𝐴 is sampled from 𝑁 (0.4, 0.05), and for the second type,
it is sampled from 𝑁 (0.6, 0.05).

Sine with frequency changes This variant is derived from a basic
sine wave with a doubled frequency at the midpoint of the time
series. By altering the frequency, we can observe how the model
generates data with varying frequencies.

Anomalies Anomalies are generated from basic sine waves by
replacing the original data at the midpoint of the time series with
Gaussian noise. This allows us to evaluate the model’s performance
in generating data with outliers.

B.0.2 Parameters. The CCD module was configured with 𝑘 = 3.
Moreover, the training epochs were fixed at 500, simulating a re-
source and time-limited scenario, enabling a more effective evalua-
tion of CCD.

B.0.3 Metrics. Following [43], we conducted a quantitative com-
parison of the correlation matrices between the two channels using
several metrics: (1) Mean Squared Error (MSE), (2) Frobenius norm
(FN), (3) Spearman’s 𝜌 , and (4) Kendall’s 𝜏 . The MSE and Frobenius
norm metrics indicate a higher similarity between the correlation
matrices of the real dataset and the generated synthetic dataset
when smaller values are obtained. On the other hand, Spearman’s
coefficient and Kendall’s coefficient approach a value of 1 as the
similarity increases.

C Dataset Selection
Dataset Selection. To ensure reproducibility and mitigate biases
or oversimplification in our evaluations, we exclusively employ
publicly available, real-world datasets. It is crucial to emphasize
that our objective is not to accumulate an exhaustive collection of
datasets, but rather to curate a diverse set encompassing multiple
domains, showcasing varied data statistics and distributions. Table
1 summarizes their statistics. Below, we provide a brief description
of each dataset.

• Stock [53]. It comprises daily historical Google stock data
from 2004 to 2019, including volume and high, low, opening,
closing, and adjusted closing prices.

• Stock Long [53]. It is identical to the Stock dataset but with
a sequence length of 125.

• Energy [6]. It includes information on appliance’s energy
use in a low-energy building.

• Energy Long [6]. It is identical to the Energy dataset but
with a sequence length of 125.

• EEG [41]. It is with the measurements derived from Elec-
troEncephaloGraphy (EEG) data captured by Emotiv EEG
Neuroheadset. It helps to understand brainwave patterns, es-
pecially those under specific cognitive conditions or stimuli.

• Dodgers Loop Game (DLG) [19]. It consists of loop sensor
data from the Glendale on-ramp for the 101 North freeway
in Los Angeles.

• Air [55]. It has air quality, meteorological, and weather fore-
cast data from 4major Chinese cities: Beijing, Tianjin, Guangzhou,
and Shenzhen from 2014/05/01 to 2015/04/30.

This study selected five datasets from different real-world do-
mains: the Stock dataset from the financial domain, the Energy
dataset from the energy sector, the EEG dataset from biological
signals, the DLG dataset from traffic, and the Air dataset. To better
investigate the impact of subsequence length on the model, we set
different values of l for the Stock and Energy datasets. Therefore,
our method is applicable to real cases or practical applications.

D Evaluation Measure Suite
Numerous metrics are available to assess the quality of TSG (Time
Series Generation) methods, which commonly adhere to principles
such as diversity, fidelity, and utility.

D.0.1 Model-basedMeasures. Thesemeasures primarily follow the
TSTR scheme [14, 24], wherein synthetically generated series are
utilized to train a post-hoc neural network, which is then evaluated
on the original time series.

• Discriminative Score (DS) [53]. This study utilizes a post-
hoc time-series classification model, leveraging 2-layer GRUs
or LSTMs, to discern between original and generated series
[53]. The original series are denoted as "real," whereas the
generated series are labeled as "synthetic." Subsequently, an
RNN classifier is trained using these labels. The fidelity of the
generation model is assessed by measuring the classification
error on a separate test set.

• Predictive Score (PS) [53]. It focuses on training a post-hoc
time series prediction model using synthetic data [53]. The
model leverages GRUs or LSTMs to predict either the tem-
poral vectors of each input series for future steps [53, 21] or
the entire vector [23]. To assess performance, the model is
evaluated on the original dataset using the mean absolute
error metric.

D.0.2 Feature-based Measures. These measures aim to capture
inter-series correlations and temporal dependencies, evaluating the
extent to which the generated time series preserves the original
characteristics. Feature-based measures offer a distinct advantage
by providing clear and deterministic results, ensuring an unambigu-
ous assessment of the quality of the generated time series.

• Marginal Distribution Difference (MDD) [35]. This measure
calculates empirical histograms for each dimension and time
step in the generated series. The bin centers and widths from
the original series are used for this purpose. By computing
the average absolute difference between these histograms and
those of the original series across bins, it assesses the align-
ment of the distributions between the original and generated
series.

• AutoCorrelation Difference (ACD) [28]. This measure calcu-
lates the autocorrelation of both the original and generated
time series and determines their difference [37, 28]. By com-
paring the autocorrelations, we can assess the preservation
of dependencies in the generated time series.

• Skewness Difference (SD). In addition to ACF, this study in-
corporates statistical measures to assess the quality of the
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generated time series [47]. One such measure is skewness,
which quantifies the distribution asymmetry of a time series
and is crucial for analyzing its marginal distribution. Given
the mean (standard deviation) of the train time series 𝑻 𝑡𝑟𝑠 as
𝝁𝑡𝑟𝑠 (𝝈𝑡𝑟𝑠 ) and the generated time series 𝑻𝑔𝑒𝑛𝑠 as 𝝁𝑔𝑒𝑛𝑠 (𝝈𝑔𝑒𝑛𝑠 ),
we evaluate the fidelity of 𝑻𝑔𝑒𝑛𝑠 by computing the skewness
difference between them as:

𝑆𝐷 =
E[(𝑻𝑔𝑒𝑛𝑠 − 𝝁

𝑔𝑒𝑛
𝑠 )3]

𝝈
𝑔𝑒𝑛
𝑠

3 − E[(𝑻 𝑡𝑟𝑠 − 𝝁𝑡𝑟𝑠 )3]
𝝈𝑡𝑟𝑠

3 . (8)

• Kurtosis Difference (KD). Similar to skewness, kurtosis is
employed to evaluate the tail behavior of a distribution, un-
covering extreme deviations from the mean. Using notations
from Equation 8, the kurtosis difference between 𝑻 𝑡𝑟𝑠 and 𝑻𝑔𝑒𝑛𝑠

is calculated as:

𝐾𝐷 =
E[(𝑻𝑔𝑒𝑛𝑠 − 𝝁

𝑔𝑒𝑛
𝑠 )4]

𝝈
𝑔𝑒𝑛
𝑠

4 − E[(𝑻 𝑡𝑟𝑠 − 𝝁𝑡𝑟𝑠 )4]
𝝈𝑡𝑟𝑠

4 . (9)

D.0.3 Training Efficiency. Training efficiency plays a critical role,
especially in scenarios that require fast time series generation meth-
ods or when computational resources are limited. However, only a
limited number of studies, such as [11, 23], have been utilized for
evaluation in this particular context.

• Training Time. Training time, referring to the wall clock time
required for training a time series generation (TSG) method, is
a crucial metric for evaluating and deploying TSG methods. It
holds significant importance due to economic considerations.

D.0.4 Distance-based Measures. To address the challenges asso-
ciated with data synthesis (DS) and privacy preservation (PS), we
propose the integration of two distance-based measures as a means
of achieving an efficient and deterministic evaluation.

• Euclidean Distance (ED). The mean of the Euclidean distance
(ED) is computed for all series and samples. As the input time
series has been preprocessed to fall within the range of [0, 1],
ED allows for a deterministic evaluation of the similarity
between 𝒔𝑔𝑒𝑛 and 𝒔𝑡𝑟 . It facilitates a value-wise comparison
of the time series.

• Dynamic Time Warping (DTW) [4]. In order to account for
alignment, we incorporate DTW to capture the optimal align-
ment between series, regardless of their pace or timing. The
alignment facilitated by DTW provides valuable insights into
the predictive quality of the generated series. Additionally,
studies such as [44] have demonstrated thatmulti-dimensional
DTW can enhance downstream classification tasks, making it
a discriminative measure.

By leveraging the metrics of ED and DTW, we can efficiently
and effectively assess the quality of generated time series. These
metrics provide streamlined alternatives to evaluate time series
generation, with similar goals as those of DS and PS.

D.1 AED and AWD
Time series generation tasks consider two key factors: Fidelity
and Correlation Preservation. Fidelity aims to generate results that
match the distribution of the original time series while avoiding
mode collapse. We use the Average Wasserstein Distance (AWD)
to reflect the diversity of the generated results. A smaller AWD

indicates a closer resemblance to the true distribution and better
fidelity. Correlation Preservation aims tomaintain the same channel
correlations as the original time series for different channels of the
generated results. We map the generated time series onto a two-
dimensional plane and calculate the Average Euclidean Distance
(AED) between the generated series and the line with an amplitude
and slope of 1. We use AED to measure the correlation preservation
of the generated results.

E Results on Synthetic Dataset
E.0.1 Experimental Setup. To effectively assess the performance
and significance of CCD, we require a customizable time series
dataset. Therefore, we utilized three synthetic datasets (Simple sine,
Sine with frequency changes, and Anomalies) with dual channels as
proposed by [43]. Following [43], we conducted a quantitative com-
parison of the correlation matrices between the two channels using
several metrics: (1) Frobenius norm (FN), (2) Spearman’s 𝜌 , and (3)
Kendall’s 𝜏 . The detailed information on datasets, parameters, and
metrics can be found in Appendix Section B.

E.0.2 Comparison with COSCIGAN. We compare our method with
the state-of-the-art (SoTA) channel-independent method to demon-
strate the performance improvements achieved by our method. To
ensure experimental fairness, CCDGAN and COSCIGAN utilize
the same single-channel generator and single-channel discrimi-
nator. The single-channel generator consists of a 1-layer LSTM
network and three linear layers, while the single-channel discrim-
inator consists of four linear layers. COSCIGAN’s CD consists of
four linear layers. Table 10 presents the results, highlighting sig-
nificant advancements in three key metrics. For the Anomalies
dataset, our performance in Kendall’s 𝜏 falls short of COSCIGAN.
This discrepancy can be attributed to Kendall’s 𝜏 ’s focus on or-
der correlation while remaining insensitive to outliers. Given the
Anomalies dataset’s substantial number of anomalies, the resulting
weaker order correlation adversely impacts the fairness of metric
evaluation.

E.0.3 Analysis of Channel Independent Generator. We explore the
impact of different single-channel TSG modules on the overall
framework. Considering the channel independence, we selected
MLP, GRU, TimeGAN, and VAE as our channel-independent TSG
modules incorporating the CCD as the central discriminator.

If we select pure VAE-based methods to be single-channel time
series generation module, the objectives of these three components
can be summarized as follows:

min
𝜃𝑖

max
𝛼

L(VAE𝑖,𝜃𝑖 ,𝐶𝐶𝐷𝛼 ) = LVAE𝑖,𝜃𝑖

+𝛾 · log(1 −𝐶𝐶𝐷𝛼 (VAE𝑖,𝜃𝑖 (𝑧),VAE𝑗≠𝑖 (𝑧))))
(10)

LVAE𝑖,𝜃𝑖 = −E𝑖,𝜃𝑖 ,𝑞 (𝑧 |𝑡𝑖 ) [log 𝑝 (𝑡𝑖 |𝑧)]
+𝛽 · KL𝑖,𝜃𝑖 , (𝑞(𝑧 |𝑡𝑖 )∥𝑝 (𝑧))

+𝛾 · log(𝐶𝐶𝐷𝛼 (𝑡𝑖 ))
(11)

where −E𝑞 (𝑧 |𝑡𝑖 ) [log𝑝 (𝑡𝑖 |𝑧)] represents the reconstruction loss in
the original loss function of VAE. Here, 𝑞(𝑧 |𝑡𝑖 ) represents the ap-
proximate posterior distribution of latent variables generated by
the encoder, and 𝑝 (𝑡𝑖 |𝑧) represents the reconstruction data distri-
bution produced by the decoder. KL(𝑞(𝑧 |𝑡𝑖 )∥𝑝 (𝑧)) represents the
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Table 10: Results of CCDGAN and COSCIGAN on simulated
datasets, where bold indicates methods that perform well in
the respective metric. The performance of the central dis-
criminator was evaluated by employing the same channel
generator. ↑ represents the larger the value, the better, while
↓ represents the smaller the value, the better.

Dataset Method FN↓ 𝜌↑ 𝜏↑
Simple CCDGAN 3.725 0.667 0.021
Sine COSCIGAN 5.002 0.208 -0.01

Freq CCDGAN 1.868 0.659 -0.009
changes COSCIGAN 2.285 -0.075 -0.05

Anomalies CCDGAN 2.041 0.767 -0.005
COSCIGAN 2.531 0.032 0.02

Table 11: The types of central discriminator (MLP or CCD)
on the performance of channel independent framework. The
smaller the values for AWD and AED, the better.

Dataset CD type AWD↓ AED↓
Simple None 0.047 0.133
Sine MLP 0.08 0.018

CCD 0.055 0.014

Freq None 0.04 0.077
changes MLP 0.068 0.024

CCD 0.061 0.017

Anomalies None 0.054 0.077
MLP 0.073 0.077
CCD 0.066 0.071

KL divergence loss, where 𝑝 (𝑧) represents the prior distribution,
typically assumed to be a multivariate Gaussian distribution. 𝛽 and
𝛾 are hyperparameters used to balance the KL divergence loss and
the CCD loss.

Table 12 indicates that choosing alternative modules for the
single-channel TSG modules is a viable approach. Regarding the
module selection, it is advisable to opt for methods that exhibit
superior performance in channel-mixing techniques while striking
a balance between performance and computational resources. We
also analyzed the performance of the entire framework when in-
corporating the non-GAN module VAE as the single-channel TSG
module. Using VAE yields inferior results compared to GAN-based
approaches. This discrepancy can be attributed to the possibility
that the current training objectives of the channel-independent
framework may not be suitable for VAE-based methods.

E.0.4 Ablation Study of CCD. We verified the effectiveness of the
CCD module in capturing temporal dependencies within multi-
variate time series, both within and across periods. The Average
Wasserstein Distance (AWD) was used to measure the diversity
of generated results, while the Average Euclidean Distance (AED)
assessed correlation preservation.

A channel-independent GANmethod served as the baseline, with
identical settings for all channel generators as described in Section
E.0.2. The CD type used ’None’ to denote the absence of a CD
module and ’MLP’ for the MLP-based central discriminator, which
consists of consists of four linear layers. It concatenates the time

series (𝑙 × 𝑁 ) horizontally, resulting in a tensor with dimensions
𝑙 × 𝑁 .

Table 11 shows that achieving both high fidelity and strong corre-
lation preservation is challenging. While the central discriminator
improves correlation, it may slightly reduce fidelity. In contrast,
CCD outperforms the MLP-based central discriminator in both
fidelity and correlation preservation.

F Results on Real Dataset
The experimental results for Section 5.5 are included in the supple-
mentary materials due to space limitations.

G Channel Independent TimeVAE adding CCD
We utilized TimeVAE, a VAE-based model, and incorporated CCD
loss into the loss function to investigate whether non-GAN models,
apart from GAN, can adopt the channel-independent approach.
In the following, bold indicates methods that perform well in the
respective metric.

H Additional Information for CCDGAN v.s.
Diffusion-based Methods

H.0.1 Baselines. We compared CCDGAN with three diffusion
model-based approaches: Diffusion-TS[54], DiffWave[27], and Diff-
Time[10]. These methods, including Diffusion-TS, DiffWave, and
DiffTime, are all based on DDPM, with modifications tailored to
the characteristics of time series data.

H.0.2 Parameters. For Diffusion-TS, DiffWave and DiffTime, to
ensure the fairness of the experiments, we strived to maintain
consistency in parameter settings. We chose 4 attention heads, each
with a dimension of 16, and selected 2 encoder and decoder layers.

H.0.3 Datasets. For dataset selection, we chose the previously
mentioned Stock and Energy datasets. For the Sine dataset, we
opted for the sine wave dataset provided in [53], which is channel-
independent and exhibits more diverse variations.

H.0.4 Evaluation Metrics. 1) Context-Fréchet Inception Dis-
tance (Context-FID) score [38] quantifies the quality of the syn-
thetic time series samples by computing the difference between
representations of time series that fit into the local context; 2) Cor-
relational score (CS) [36] uses the absolute error between cross
correlation matrices by real data and synthetic data to assess the
temporal dependency.

2) Correlational Score To mitigate the challenges associated
with DS and PS, we propose the incorporation of distance-based
measures to provide an efficient, deterministic evaluation.

3) Discriminative Score For a quantitative measure of simi-
larity, we train a post-hoc time-series classification model (by op-
timizing a 2-layer LSTM) to distinguish between sequences from
the original and generated datasets. First, each original sequence is
labeled real, and each generated sequence is labeled not real. Then,
an off-the-shelf (RNN) classifier is trained to distinguish between
the two classes as a standard supervised task.
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Table 12: The results of different channel-independent generators with CCD. Among them, channel-independent GANs based
on MLP, GRU, and TimeGAN were employed. We also utilized VAE to investigate whether non-GAN models, apart from GAN,
can adopt the channel-independent approach.

Dataset Model FN↓ 𝜌↑ 𝜏↑

Simple MLP 6.737 0.122 -0.108
Sine GRU 5.509 0.235 -0.01

TimeGAN 5.268 0.288 -0.007
VAE 7.338 0.170 -0.016

Freq MLP 3.004 -0.144 -0.198
changes GRU 2.291 -0.081 -0.059

TimeGAN 2.334 -0.118 -0.124
VAE 5.004 -0.104 -0.037

Anomalies MLP 4.889 -0.1 -0.016
GRU 2.531 0.039 0.032

TimeGAN 3.829 0.027 0.107
VAE 3.482 0.002 0.021

Table 13: Detail results about Figure 3 on Stock dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.315 1.186 0.327 0.334 0.502 0.319
ACD↓ 0.015 0.017 0.078 0.037 0.031 0.029
SD↓ 0.127 0.059 0.4 0.217 0.215 0.138
KD↓ 0.446 0.458 2.54 1.647 0.958 0.771

ED↓ 1.068 1.051 1.088 1.101 1.098 1.075
DTW↓ 2.772 2.791 2.787 3.014 2.781 2.784

PS↓ 0.073 0.094 0.084 0.086 0.109 0.088
DS↓ 0.327 0.163 0.177 0.396 0.482 0.339

Time 52min11s 1h43min 1min33s 55min35s 47min50s 1h03min

Table 14: Detail results about Figure 3 on Stock Long dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.451 1.207 0.455 0.457 0.482 0.516
ACD↓ 0.128 0.143 0.235 0.131 0.135 0.157
SD↓ 0.206 0.303 0.528 0.215 0.069 0.238
KD↓ 2.223 0.782 2.541 1.414 0.569 1.115

ED↓ 2.388 2.697 2.486 2.539 2.722 2.532
DTW↓ 6.229 6.269 6.319 6.625 6.698 6.626

PS↓ 0.093 0.112 0.086 0.095 0.093 0.084
DS↓ 0.314 0.244 0.124 0.399 0.471 0.382

Time↓ 49min 4h41min 56s 57min 44min 1h40min

4) Predictive Score In order to be useful, the sampled data
should inherit the predictive characteristics of the original. In par-
ticular, we expect TimeGAN to excel in capturing conditional dis-
tributions over time. Therefore, using the synthetic dataset, we
train a post-hoc sequence-prediction model (by optimizing a 2-
layer LSTM) to predict next-step temporal vectors over each input
sequence. Then, we evaluate the trained model on the original
dataset.

5) Training Time It refers to the wall clock time for training
a TSG method. It is a vital measure for evaluating and deploying
TSG methods due to economic considerations.

6) 2000 Data Sampling Time It evaluates the time spent by
the model in generating data, which was not previously empha-
sized, but significantly affects the user experience with the model.
Additionally, methods based on diffusion models require longer
generation times, leading to increased attention to sampling time.
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Table 15: Detail results about Figure 3 on Energy dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.289 0.328 0.386 0.307 0.294 0.306
ACD↓ 0.023 0.074 0.118 0.028 0.075 0.099
SD↓ 0.062 0.129 0.138 0.07 0.218 0.34
KD↓ 0.572 0.421 0.674 0.588 0.824 0.723

ED↓ 0.966 0.956 0.987 0.972 0.92 0.775
DTW↓ 6.045 6.025 5.799 6.267 5.928 4.984

PS↓ 0.247 0.252 0.288 0.256 0.492 0.311
DS↓ 0.419 0.335 0.487 0.469 0.471 0.488

Time↓ 2h32min 3h27min 15min19s 2h11min 1h38min 1h9min

Table 16: Detail results about Figure 3 on Energy Long dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.319 0.413 0.431 0.328 0.783 0.433
ACD↓ 0.103 0.123 0.27 0.109 0.29 0.403
SD↓ 0.088 0.153 0.183 0.093 0.592 0.192
KD↓ 0.289 0.185 0.621 0.489 6.735 0.823

ED↓ 2.017 2.189 2.035 2.297 2.342 2.349
DTW↓ 13.377 13.549 12.527 13.776 13.788 14.325

PS↓ 0.311 0.253 0.289 0.254 0.488 0.253
DS↓ 0.477 0.492 0.499 0.483 0.486 0.496

Time↓ 1h57min 2h58min 43min 1h42min 3h05min 2h24min

Table 17: Detail results about Figure 3 on EEG dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.208 0.214 0.347 0.316 0.249 0.233
ACD↓ 0.043 0.068 0.148 0.047 0.143 0.076
SD↓ 0.167 0.188 0.241 0.174 0.381 0.27
KD↓ 0.509 0.361 0.958 0.662 1.51 0.663

ED↓ 1.331 1.693 1.517 1.831 1.578 1.762
DTW↓ 6.263 6.371 6.538 7.182 6.121 7.049

PS↓ 0.041 0.033 0.039 0.045 0.218 0.041
DS↓ 0.442 0.339 0.475 0.451 0.491 0.404

Time↓ 2h02min 4h30min 42min 2h12min 3h51min 2h12min

Table 18: Channel Independent TimeVAE adding CCD.

Dataset Model MSE↓ FN↓ 𝜌↑ 𝜏↑

Simple Sine Without CCD 0.167 9.071 -0.019 -0.129
With CCD 0.121 7.338 0.17 -0.016

Freq changes Without CCD 0.179 6.382 -0.191 -0.235
With CCD 0.123 5.004 -0.104 -0.037

Anomalies Without CCD 0,236 7.711 -0.136 -0.113
With CCD 0.143 3.482 0.002 0.021
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I Analysis of Channel-independent Framework
I.0.1 Exploration of Different Channel Independent Generators. Fol-
lowing [43], we conducted a quantitative comparison on three
synthetic datasets (Simple sine, Sine with frequency changes, and
Anomalies). We explore the impact of different channel independent
generators on the overall framework. The detailed results can be
found in Appendix Section E. TimeGAN is a better team for CCD
than MLP, GRU, and VAE.
Table 19: Analysis of Period Block on Stock dataset. WT
stands for Wavelet transform.

Period Block FFT WT

MDD↓ 0.315 0.313
ACD↓ 0.015 0.019
SD↓ 0.127 0.132
KD↓ 0.446 0.448

ED↓ 1.068 1.062
DTW↓ 2.772 2.779

PS↓ 0.073 0.086
DS↓ 0.327 0.319

J TSGGuide versus TSGBench
In contrast to TSGBench [2], the updated sections are marked in
blue.

J.1 TSGBench
(1) As a foundational step, we advocate for users to commence

with VAE-based methods (e.g., TimeVAE and LS4). Their
consistent leading performance and superior computational
efficiency make them go-to choices for initial exploration.

(2) In applications that emphasize autocorrelation or forecasting,
such as predictive maintenance or stock market analysis,
the ACD measure becomes crucial. Fourier Flow, which is
recognized for maintaining temporal dependencies, is highly
suitable for these scenarios. On the other hand, for capturing
complex multi-variate relationships in datasets, COSCI-GAN
is the recommended choice.

(3) Subsequent considerations focus on dataset size and domain
specificity. For small-sized datasets, RTSGAN and LS4, which
excel in single DA, are strong choices. For heterogeneous
datasets, or when the goal is to generate time series for a
new target domain, TimeVAE and COSCI-GAN stand out for
their effectiveness in cross DA.

(4) Users can further fine-tune their method selection based on
specific real-world application needs, which involves iden-
tifying the most relevant evaluation measures. In this case,
Figure 1 serves as a valuable visual guide.

J.2 TSGGuide
(1) In Figure 3, VAE-based methods demonstrate faster train-

ing times and rank above average on several metrics. This
makes VAE-based methods suitable for initial attempts due
to their lower time requirements. As a foundational step, we
recommend that users start with the VAE-based method. Its

consistently excellent computational efficiency makes it the
preferred choice for initial exploration and handling of small
data sets.

(2) If we emphasize autocorrelation or forecasting, such as pre-
dictive maintenance or stock market analysis, the ACD mea-
sure becomes crucial. CCDGAN is highly suitable for these
scenarios.

(3) In Figure 3, CCD shows a leading performance on the ma-
jority of datasets, proving that CCDGAN performs well on
real-world datasets, even though they come from different
domains. When the dataset originates from a novel domain
or exhibits complex multivariate relationships, CCDGAN
is a recommended choice. It shows excellent performance
across data sets from various domains and outperforms other
methods, particularly on datasets with a large number of
variables.

(4) In Table 4, diffusion model-based methods achieve certain
advantages in metrics. However, these methods require sig-
nificant training and sampling time, leading to higher compu-
tational costs. Therefore, if ample computational resources
are available, diffusion model-based approaches should be
considered. When computational resources and dataset are
abundant and optimal results are desired, it is recommended
to utilize Diffusion-TS. These methods typically exhibit sta-
ble training and yield superior performance.

(5) Users can further adjust method selection based on specific
application requirements, including identifying the appro-
priate channel-independent TSG module for CCDGAN (see
Appendix Section E).
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